www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - glm. Konvergenz Potenzreihe
glm. Konvergenz Potenzreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

glm. Konvergenz Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:26 Mi 27.11.2013
Autor: aaron12

Hallo,

ich verstehe einen "Beweis nicht", bei dem gezeigt wird dass
[mm] \summe_{n=1}^{\infty}z^{n}/n [/mm] gleichmäßig auf dem Einheitskreis konvergiert, außer bei z=1

Wie man auf den Konvergenzradius 1 kommt weiß ich. Es geht jetzt um das Verhalten am Rand des Konvergenzradius und da konvergiert es anscheinend gleichmäßig.

http://en.wikipedia.org/wiki/Mercator_series

Der letzte Abschnitt. Die Umformung nachdem man die Reihe mit (1-z) multipliziert kann ich nachvollziehen, allerdings weiß ich nicht wieso man das macht bzw. inwiefern das die gleichmäßige Konvergenz für
|z|=1, z [mm] \not= [/mm] 1

Würde mich freuen wenn mir da jemand weiterhelfen könnte :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
glm. Konvergenz Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:40 Do 28.11.2013
Autor: fred97


> Hallo,
>  
> ich verstehe einen "Beweis nicht", bei dem gezeigt wird
> dass
> [mm]\summe_{n=1}^{\infty}z^{n}/n[/mm] gleichmäßig auf dem
> Einheitskreis konvergiert, außer bei z=1

Das stimmt so nicht und das wird auch in dem von Dir erwähnten Wiki-Artikel nicht gesagt !

Führen wir einige Bezeichnungen ein:

Sei [mm] D:=\{z \in \IC:|z|<1\} [/mm] und für r>0 sei [mm] D_r:= \{z \in \IC: |z-1|
In dem Artikel wird behauptet:

ist r>0, so konvergiert [mm]\summe_{n=1}^{\infty}z^{n}/n[/mm] gleichmäßig auf [mm] \overline{D} \setminus D_r. [/mm]

>  
> Wie man auf den Konvergenzradius 1 kommt weiß ich. Es geht
> jetzt um das Verhalten am Rand des Konvergenzradius und da
> konvergiert es anscheinend gleichmäßig.
>  
> http://en.wikipedia.org/wiki/Mercator_series
>  
> Der letzte Abschnitt. Die Umformung nachdem man die Reihe
> mit (1-z) multipliziert kann ich nachvollziehen, allerdings
> weiß ich nicht wieso man das macht


weil der Beweis damit funktioniert !


>  bzw. inwiefern das die
> gleichmäßige Konvergenz für
> |z|=1, z [mm]\not=[/mm] 1

S.o.


>  
> Würde mich freuen wenn mir da jemand weiterhelfen könnte
> :)


Wir setzen für z [mm] \in \IC [/mm] mit |z| [mm] \le [/mm] 1:

[mm] g_m(z):=\summe_{n=1}^{m}z^{n}/n [/mm]  (m [mm] \in \IN) [/mm]

Dann ist [mm] (1-z)g_m(z)=z -\sum_{n=2}^m \frac{z^n}{n(n-1)} [/mm] - [mm] \frac{z^{m+1}}{m}. [/mm]

Weiter sei [mm] f_m(z):= [/mm] z [mm] -\sum_{n=2}^m \frac{z^n}{n(n-1)} [/mm] - [mm] \frac{z^{m+1}}{m}. [/mm]

Für |z| [mm] \le [/mm] 1 Konvergieren die Folgen

   [mm] (\sum_{n=2}^m \frac{z^n}{n(n-1)})_m [/mm] und [mm] (\frac{z^{m+1}}{m})_m [/mm] gleichmäßig.

Damit ist [mm] (f_m) [/mm] auf [mm] \overline{D} [/mm] gleichmäßig konvergent.

Wegen [mm] g_m(z)=\bruch{f_m(z)}{1-z} [/mm] konvergiert [mm] (g_m) [/mm] punktweise auf [mm] \overline{D} \setminus \{1\}. [/mm]

Es folgt daraus die gleichmäßige Konvergenz von [mm] (g_m) [/mm] auf [mm] \overline{D} \setminus D_r [/mm]

FRED

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de