www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - glm. Konvergenz von Fkt.reihen
glm. Konvergenz von Fkt.reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

glm. Konvergenz von Fkt.reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 Mi 28.09.2011
Autor: eddiebingel

Aufgabe
Beweisen Sie, dass für alle r>0 die Funktionenreihe f(x) = [mm] \summe_{n=1}^{\infty} \bruch{x^{4}}{x^{2}+n^{2}} [/mm] auf [-r,r] gleichmäßig konvergent ist.
Folgern Sie, dass f(x) auf ganz [mm] \IR [/mm] stetig ist.

So ich verstehe zwar unsere Definition der gleichmäßigen Konvergenz nur habe ich keinen blassen Schimmer wie ich bei so einer Funktionenreihe vorgehe um sie zu untersuchen.
Ich denke dass ich iwie eine kgte Majorante finden müsste aber so genau weiss ich es auch nicht

Hoffe dass ihr mir weiterhelfen könnt
mfg eddie

        
Bezug
glm. Konvergenz von Fkt.reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 Mi 28.09.2011
Autor: fred97


> Beweisen Sie, dass für alle r>0 die Funktionenreihe f(x) =
> [mm]\summe_{n=1}^{\infty} \bruch{x^{4}}{x^{2}+n^{2}}[/mm] auf [-r,r]
> gleichmäßig konvergent ist.
>  Folgern Sie, dass f(x) auf ganz [mm]\IR[/mm] stetig ist.
>  So ich verstehe zwar unsere Definition der gleichmäßigen
> Konvergenz nur habe ich keinen blassen Schimmer wie ich bei
> so einer Funktionenreihe vorgehe um sie zu untersuchen.
>  Ich denke dass ich iwie eine kgte Majorante finden müsste
> aber so genau weiss ich es auch nicht
>  
> Hoffe dass ihr mir weiterhelfen könnt


Für x [mm] \in [/mm] [-r,r] und n [mm] \in \IN [/mm] ist

          $0 [mm] \le \bruch{x^4}{x^2+n^2} \le \bruch{x^4}{n^2} \le \bruch{r^4}{n^2}$ [/mm]  

Jetzt bemühe das Maj.-Kriterium von Weierstraß.

FRED

> mfg eddie


Bezug
                
Bezug
glm. Konvergenz von Fkt.reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:30 Mi 28.09.2011
Autor: eddiebingel

Also muss ich zeigen dass [mm] \summe_{n=1}^{\infty} \bruch{r^{4}}{n^{2}} [/mm] konvergiert um das Weierstraß Kriterium anzuwenden
Falls dies der Fall ist konvergiert f(x)

richtig?

Bezug
                        
Bezug
glm. Konvergenz von Fkt.reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Mi 28.09.2011
Autor: fred97


> Also muss ich zeigen dass [mm]\summe_{n=1}^{\infty} \bruch{r^{4}}{n^{2}}[/mm]
> konvergiert um das Weierstraß Kriterium anzuwenden

Ja


>  Falls dies der Fall ist konvergiert f(x)

Hä ? Nein, Du hast dann: die Funktionenreihe konvergiert gleichmäßig auf [-r,r] und das für jedes r>0.

FRED

>  
> richtig?


Bezug
                                
Bezug
glm. Konvergenz von Fkt.reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:42 Mi 28.09.2011
Autor: eddiebingel


> > Also muss ich zeigen dass [mm]\summe_{n=1}^{\infty} \bruch{r^{4}}{n^{2}}[/mm]
> > konvergiert um das Weierstraß Kriterium anzuwenden
>  
> Ja
>  
>
> >  Falls dies der Fall ist konvergiert f(x)

>  
> Hä ? Nein, Du hast dann: die Funktionenreihe konvergiert
> gleichmäßig auf [-r,r] und das für jedes r>0.
>

ok den zweiten Teil kann ich nun mit einem Satz aus der VL zeigen

> FRED
> > richtig?

Vielen Dank

Bezug
                                        
Bezug
glm. Konvergenz von Fkt.reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:44 Mi 28.09.2011
Autor: fred97


> > > Also muss ich zeigen dass [mm]\summe_{n=1}^{\infty} \bruch{r^{4}}{n^{2}}[/mm]
> > > konvergiert um das Weierstraß Kriterium anzuwenden
>  >  
> > Ja
>  >  
> >
> > >  Falls dies der Fall ist konvergiert f(x)

>  >  
> > Hä ? Nein, Du hast dann: die Funktionenreihe konvergiert
> > gleichmäßig auf [-r,r] und das für jedes r>0.
>  >

> ok den zweiten Teil kann ich nun mit einem Satz aus der VL
> zeigen

Mach mal vor.

FRED

>  
> > FRED
>  > > richtig?

>
> Vielen Dank


Bezug
                                                
Bezug
glm. Konvergenz von Fkt.reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:18 Do 29.09.2011
Autor: eddiebingel

Ok ich habe so angefagen

zu zeigen: Grenzfunktion ist auf ganz [mm] \IR [/mm] stetig

Sei [mm] x\in \IR [/mm] beliebig fest und wähle [mm] r\in \IR [/mm] mit [mm] x\in [/mm] [-r,r]

Grenzfunktion auf [-r,r] definiert da die Reihe auf [-r,r] glm. konvergiert

Da für alle n: [mm] \bruch{x^{4}}{x^{2}+n^{2}} [/mm] stetig auf [-r,r] ist
folgt dass die Grenzfunktion auf [-r,r] stetig ist, insbesondere auch im Punkt x

Da x beliebig folgt Grenzfkt. in jedem Pkt [mm] x\in \IR [/mm] stetig


kann man das so machen ?

Bezug
                                                        
Bezug
glm. Konvergenz von Fkt.reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:29 Do 29.09.2011
Autor: fred97


> Ok ich habe so angefagen
>  
> zu zeigen: Grenzfunktion ist auf ganz [mm]\IR[/mm] stetig
>  
> Sei [mm]x\in \IR[/mm] beliebig fest und wähle [mm]r\in \IR[/mm] mit [mm]x\in[/mm]
> [-r,r]
>  
> Grenzfunktion auf [-r,r] definiert da die Reihe auf [-r,r]
> glm. konvergiert
>  
> Da für alle n: [mm]\bruch{x^{4}}{x^{2}+n^{2}}[/mm] stetig auf
> [-r,r] ist
>  folgt dass die Grenzfunktion auf [-r,r] stetig ist,
> insbesondere auch im Punkt x
>  
> Da x beliebig folgt Grenzfkt. in jedem Pkt [mm]x\in \IR[/mm] stetig
>  
>
> kann man das so machen ?

ja

fred


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de