www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - glm. Stetigkeit zeigen
glm. Stetigkeit zeigen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

glm. Stetigkeit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Mi 06.02.2008
Autor: XPatrickX

Aufgabe
Für eine Funktion f: D [mm] \to \IR [/mm] mit D [mm] \subset \IR^n [/mm] gelte |f(x)-f(y)| [mm] \le [/mm] L|x-y| für alle x,y [mm] \in [/mm] D und einer Konstanten [mm] L\ge [/mm] 0. Zeige: f ist gleichmäßig stetig.  

Hey,

ich komme bei obiger Aufgabe nicht weiter. Ich kann ja durch |x-y| teilen. Dann habe ich [mm] \abs{\bruch{f(x)-f(y)}{x-y}}\le [/mm] L. Jetzt weiß ich aber ja nur, dass die Ableitung beschränkt ist. Wie komme ich denn dann auf gleichmäßige Stetigkeit?
Als Kriterium für die gleichmäßige Stetigkeit habe ich ja: [mm] \forall\varepsilon>0 \exists\delta>0, [/mm] sodass für alle x,y mit |x-y| < [mm] \delta [/mm] gilt: [mm] |f(x)-f(y)|<\varepsilon. [/mm]

Danke für eure Hilfe.

Gruß Patrick

        
Bezug
glm. Stetigkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Mi 06.02.2008
Autor: Zorba

Hmm, betrachte mal [mm] L\delta=\varepsilon [/mm]

Bezug
                
Bezug
glm. Stetigkeit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Mi 06.02.2008
Autor: XPatrickX

Komme mit deinem Tipp leider nicht wirklich weiter. Kannst du das nochmal genauer erklären?

Bezug
                        
Bezug
glm. Stetigkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:21 Mi 06.02.2008
Autor: Zorba

naja, wenn |x-y|< [mm] \delta, [/mm] dann ist [mm] |f(x9-f(y)|

Bezug
                                
Bezug
glm. Stetigkeit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Mi 06.02.2008
Autor: XPatrickX

Ah stimmt. Also kann ich so argumentieren:

Sei [mm] \varepsilon [/mm] > 0 beliebig vorgegeben und setze [mm] \delta [/mm] := [mm] \varepsilon/L [/mm] , da nach Voraussetzung gilt: $|f(x)-f(y)| [mm] \le [/mm] L|x-y|$ folgt nun für alle x,y mit [mm] |x-y|<\delta: [/mm] $|f(x)-f(y)| < [mm] L\delta [/mm] = [mm] \varepsilon$. [/mm]



Bezug
                                        
Bezug
glm. Stetigkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Do 07.02.2008
Autor: Gnometech

Exakt und der entscheidende Punkt ist, dass dieses [mm] $\delta$ [/mm] unabhängig von $x$ gewählt ist - daher ist die Abbildung gleichmäßig stetig.

Man nennt diese Bedingung auch "dehnungsbeschränkt" oder "Lipschitz-stetig".

Gruß,
Lars

Bezug
                                                
Bezug
glm. Stetigkeit zeigen: Vielen Dank!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:00 Do 07.02.2008
Autor: XPatrickX

Vielen Dank an euch! Viele Grüße Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de