www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - grenzwert
grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

grenzwert: idee
Status: (Frage) beantwortet Status 
Datum: 15:25 Di 28.03.2006
Autor: bibabutzemann

Aufgabe
berechnen sie folgenden grenzwert:
[mm]\limes_{n \to \infty} (\bruch{1}{1\cdot2} + \bruch{1}{2\cdot3} +...+\bruch{1}{n(n+1)} ) [/mm]
hinweis:
[mm] \bruch{1}{n(n+1)} = \bruch{1}{n} - \bruch{1}{n(n+1)} [/mm]
lösung:
nach dem hinweis ergibt sich:
[mm] \summe_{k=1}^{n} \bruch{1}{k} - \bruch{1}{k(k+1)} = 1 - \bruch{1}{n(n+1)} [/mm]
also konvergiert die folge gegen 1

also das ist mein erster post. ich versuche gerade mein letztes semster aufzuarbeiten und hab die aufgabe und lösungsskizze gepostet. leider raff ich nicht, wie folgender schritt vollzogen wird:
[mm] \summe_{k=1}^{n} \bruch{1}{k} - \bruch{1}{k(k+1)} = 1 - \bruch{1}{n(n+1)} [/mm]
ich steh ein wenig auf dem schlauch, wäre wenn mir jemand einen zwischenschritt bieten könnte!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
grenzwert: Ganz leicht
Status: (Antwort) fertig Status 
Datum: 15:40 Di 28.03.2006
Autor: statler

Hallo,

das ist doch ein Idealfall für die vollständige Induktion, die man bei der Gelegenheit auch gleich mal wiederholen kann!

Gruß aus HH-Harburg
Dieter

Ach ja, fast vergessen: [willkommenmr]


Bezug
        
Bezug
grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Di 28.03.2006
Autor: bibabutzemann

danke erst mal. also ich hab jetzt mit volllständiger induktion bewiesen, dass
[mm]\summe_{k=1}^{n} \bruch{1}{k} - \bruch{1}{k(k+1)} = 1 - \bruch{1}{n(n+1)}[/mm] gilt.

allerdings war mir das ja ohne die lösung nicht bekannt. aus der aufgabe komm ich ja nur darauf, dass
[mm] \limes_{n \to \infty} (\bruch{1}{1\cdot2} + \bruch{1}{2\cdot3} +...+\bruch{1}{n(n+1)} ) = \summe_{k=1}^{n} \bruch{1}{k} - \bruch{1}{k(k+1)}[/mm]
wie kommt man darauf, dass
[mm]\summe_{k=1}^{n} \bruch{1}{k} - \bruch{1}{k(k+1)} = 1 - \bruch{1}{n(n+1)}[/mm]
entspricht, ohne das vorher zu wissen?

Bezug
                
Bezug
grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Di 28.03.2006
Autor: dormant

Hallo!

Es gibt kein allgemeines Rezept - die Mathematiker haben damals Jahre an sowas gearbeitet um auf so ein Ergebnis zu kommen. Man kann sich höchstens ein Paar Elementar Tatsachen überlegen:

[mm] \summe_{k=1}^{n}(\bruch{1}{k}-\bruch{1}{k(k+1)})=\summe_{k=1}^{n}\bruch{1}{k+1} [/mm]

und dann ein Paar Überlegungen über die harmonische Reihe ins Spiel bringen. Viel mehr könnte man im Allgemeinen nicht machen.

Gruß,
dormant

Bezug
                        
Bezug
grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:18 Di 28.03.2006
Autor: bibabutzemann

dann ist das wohl, was mein prof als "ein gefühl für die mathematik haben" bezeichnet... danke recht herzlich

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de