www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - grenzwert metrik und integral
grenzwert metrik und integral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

grenzwert metrik und integral: Aufgabe Frage
Status: (Frage) beantwortet Status 
Datum: 19:08 Fr 24.04.2009
Autor: MissPocahontas

Aufgabe
Sei (fn)n eine Folge in C([0,1]) und sei (gn)n eine Folge stetig differenzierbarer Funktionen gn: [0,1] --> R. Beweisen oder widerlegen sie.
(i) Ist [mm] \limes_{n\rightarrow\infty} \parallel [/mm] fn [mm] \parallel \infty [/mm] = 0, so folgt [mm] \limes_{n\rightarrow\infty} \integral_{0}^{1}{fn(x) dx}= [/mm] 0.
(ii) Ist [mm] \limes_{n\rightarrow\infty} \parallel [/mm] gn  [mm] \parallel \infty [/mm]  = 0, so folgt [mm] \limes_{n\rightarrow\infty} \parallel gn`\parallel \infty [/mm] = 0

Hey Leute,
ich hab mich an dieser Aufgabe probiert, aber so richtig komm ich nicht weiter. Ich hab mir bei ii überlegt, dass man den Grenzwert dieser Norm ja auch durch das Integral von 0 bis 1 von den Norm der Ableitung schreiben könnte. Aber so richtig weiter gekommen bin ich nicht, da man den Grenzwert ja net ins integral ziehen darf. Habt ihr allgemein für diese aufgabe einen tip? ich weiß, dass ich wohl abschätzen muss... aber wie... naja. Danke schon mal.

        
Bezug
grenzwert metrik und integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 Fr 24.04.2009
Autor: pelzig

i) Es gilt doch [mm] $\left|\int_a^bf(x)\ dx\right|\le |b-a|\cdot\|f\|_\infty$. [/mm]
ii) Gegenbeispiel: [mm] $g_n(x)=\frac{1}{n}\sin(n^2x)$ [/mm]

Gruß, Robert

Bezug
                
Bezug
grenzwert metrik und integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:23 So 26.04.2009
Autor: MissPocahontas

Erstmal lieben lieben Dank.
Also bei (i) diese Abschätzung kenne ich auch aus der Analysis 1, aber es geht hier ja nicht um den Betrag, sondern das Integral allgemein. Zwar ist der Betrag auch größer als das Integral, das Integral aber nicht immer grlößer als 0. Und man bräuchte ja noch was, wo man das Integral nach unten abschätzen kann oder?

Bezug
                        
Bezug
grenzwert metrik und integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 So 26.04.2009
Autor: pelzig


>  Also bei (i) diese Abschätzung kenne ich auch aus der
> Analysis 1, aber es geht hier ja nicht um den Betrag,
> sondern das Integral allgemein. Zwar ist der Betrag auch
> größer als das Integral, das Integral aber nicht immer
> grlößer als 0. Und man bräuchte ja noch was, wo man das
> Integral nach unten abschätzen kann oder?

Ja... [mm]-|x|\le x\le |x|[/mm] gilt immer. Außerdem: Du willst zeigen, dass die reelle Zahlenfolge [mm] \left(\int_a^b f_n(t)\ dt\right)_{n\in\IN} [/mm] gegen 0 konvergiert. Es ist aber [mm] $$\left|\int_a^b f_n(t)\ dt-0\right|=\left|\int_a^b f_n(t)\ dt\right|\le |b-a|\|f\|_\infty<\varepsilon$$ [/mm] für hinreichend große n, da ja [mm] \lim_{n\to\infty}\|f_n\|_\infty=0. [/mm]

Gruß, Robert

Bezug
                                
Bezug
grenzwert metrik und integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:51 So 26.04.2009
Autor: MissPocahontas

Ja, jetzt wird es mir klar. Danke nochmal für die Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de