www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - größtmög. Rechteck/Dreieck
größtmög. Rechteck/Dreieck < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

größtmög. Rechteck/Dreieck: Parabel
Status: (Frage) beantwortet Status 
Datum: 15:09 Mo 01.05.2006
Autor: jane882

Aufgabe
Baue in die Parabel das größtmögliche, rechtwinklige rechteck ein sowie das größtmögliche dreieck!

hiii...könnt ihr mir nochmal kurz helfennn  
ich muss mal wieder aus einer parabel a) das größt mögliche rechteck einbauen und b) das größt mögliche dreieck  

funktion ist: f(x)= -2x²+18

könnt ihr mir das vielleicht mal schrittweise erklären  ich schreib nämlich nächste woche eine klausur darüber und weiß noch immer nicht wie das geht  

großes dankeschön!

Mein Versuch:
A(x)= 2x* f(x)
A(x)= 2x* (-2x²+18)
Ausmultiplizieren: -4x³+36x
D= (-3,3)
f`(x)= -12x²+36
-12x²+36= 0 /-36
-12x²      =-36/:(-12)
x²= 3 / WURZEL
x= 1,7, x2= -1,7

f´(x)=0 oder f´´(x) ungleich 0
f´´(x)= -24x
f´´(WURZEL 3)= -40,8 <0, Maximum
f´´(-WURZEL 3)= 40,8> 0, Minimum

H(1,7/41,5)
T(-1,7/-41,5)

A= WURZEL 3* 2
A= ca. 3,4

so? :(
und bei dem dreieck hab ich nuuullll ahnung!
A= 1/2*g+h?!

        
Bezug
größtmög. Rechteck/Dreieck: klitze-kleine Korrektur
Status: (Antwort) fertig Status 
Datum: 15:27 Mo 01.05.2006
Autor: Loddar

Hallo Jane!


> H(1,7/41,5)
> T(-1,7/-41,5)

[applaus] Bis hierher alles richtig gemacht ...

  

> A= WURZEL 3* 2
> A= ca. 3,4

Aber den maximalen Flächeninhalt [mm] $A_\max$ [/mm] hast Du doch bereits ermittelt mit:

[mm] $A_{\max} [/mm] \ = \ [mm] A\left( \ \wurzel{3} \ \right) [/mm] \ = \ [mm] 2*\wurzel{3}*\left[18-2*\left( \ \wurzel{3} \ \right)^2 \ \right] [/mm] \ = \ [mm] 24\wurzel{3} [/mm] \ [mm] \approx [/mm] \ [mm] 41.\red{6}$ [/mm]


>  und bei dem dreieck hab ich nuuullll ahnung!
>  A= 1/2*g+h?!

Dabei funkioniert das genauso wie oben. Ich gehe mal davon aus, dass eine Ecke des Dreieckes im Urspung liegt und die anderen beiden Eckpunkte auf der Parabel.

Dann gil:

[mm] $A_\Delta [/mm] \ = \ [mm] \bruch{1}{2}*\red{g}*\blue{h_g} [/mm] \ = \ [mm] \bruch{1}{2}*\red{2x}*\blue{f(x)} [/mm] \ = \ [mm] x*\left(18-2x^2\right) [/mm] \ = \ ...$


Gruß
Loddar


Bezug
                
Bezug
größtmög. Rechteck/Dreieck: Dreieck
Status: (Frage) beantwortet Status 
Datum: 15:48 Mo 01.05.2006
Autor: jane882

Aufgabe
Dreieck in der Parabel

Hi:) Okay also ist Amax= 41,6...und zu dem rechteck nochmal...dieser definitionsbereich bezieht sich dann auf die 1,7 oder?!

Und wie ist das dann bei dem Dreieck? Bleibt der dann gleich? ...Okay ich versuchs mal :)
f(x)= x* (18-2x²)
Ausmultiplizierren: f(x)= 18x- 2x³
f`(x)= 18-6x²
18-6x²= 0 /-18
-6x²= -18 /(:-6)
x²= 3 / WURZEL
x= 1,7 , x2= -1,7

f´´(x)= -12x
f´´(WURZEL 3)= -20,4 >0, Maximum
f´´(-WURZEL 3)= 20,4< 0, Minimum

H(WURZEL 3/20,7)
T(-WURZEL 3/-20,7)

also ist Amax= 20,7 ?! :)


Bezug
                        
Bezug
größtmög. Rechteck/Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 Mo 01.05.2006
Autor: M.Rex

Die Rechnung stimmt voll und ganz.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de