www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - gruppe
gruppe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gruppe: frage zu einer ungleichung
Status: (Frage) beantwortet Status 
Datum: 17:46 Sa 22.10.2005
Autor: tangye8152

sei G beliebig gruppe,a und b sind zwei elemente davon mit ab=ba
zu zeigen:sind a,b von endliche ordnung,ord(a)=x,ord(b)=y,so ist auch ab von endliche ordnung ,es gilt noch
[mm] 1.\bruch{kgV(x,y)}{ggT(x,y)} \le [/mm] t [mm] \le [/mm] kgV(x,y)
[mm] 2.t=m\bruch{kgV(x,y)}{ggT(x,y)},wobei [/mm] mein geeigneter teiler von ggT(x,y)
t=ord(ab)
frage zu 1.:ich habe schon bewiesen,dass t
endlich,und wenn x und y zu einander prim,dann gilt das gleichzeichen ,aber fuer <?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Sa 22.10.2005
Autor: Hanno

Hallo!

Dass $ord(ab)$ endlich ist, ist klar, da [mm] $(ab)^{xy}=(a^x)^y (b^y)^x [/mm] = e$. Es sei nun $ord(ab)=t$, dann ist [mm] $a^t [/mm] = [mm] b^{-t}$, [/mm] also [mm] $(a^t)^x [/mm] = [mm] (b^{-t})^x\gdw [/mm] e = [mm] b^{-xt}$. [/mm] Daraus folgt, dass $xt$ Vielfaches von $y$ ist. Es muss also $t$ Vielfaches von [mm] $\frac{y}{\text{ggT}(x,y)}$ [/mm] sein. Analog dazu ergibt sich, dass $yt$ Vielfaches von $x$, also $t$ Vielfaches von [mm] $\frac{x}{\text{ggT}(x,y)}$ [/mm] gelten muss. Zusammen folgt [mm] $\frac{\text{kgV}(x,y)}{\text{ggT}(x,y)}|t$. [/mm] Wegen $t|xy$ (denn [mm] $(ab)^{xy}=e$, [/mm] d.h. $ord(ab)$ ist Teiler von $xy$) folgt nun Aussage 1.

Klar? Aussage 2 ergibt sich nun sofort aus Aussage 1, schaffst du das selbst?


Liebe Grüße,
Hanno

Bezug
                
Bezug
gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:50 Di 25.10.2005
Autor: tangye8152

[mm] \bruch{kgV(X,Y)}{ggT(X,Y)} [/mm] |t
d.h.t=m [mm] \bruch{kgV(X,Y)}{ggT(X,Y)},m [/mm] ist eine natueliche zahl
frage:ist m einen teil von ggt(x,y)

Bezug
                        
Bezug
gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:53 Sa 29.10.2005
Autor: Hanno

Hallo.

Ja, $t$ muss Teiler von $ggT(X,Y)$ sein. Dies liegt daran, [mm] $(ab)^{kgV(X,Y)}=e$ [/mm] ist und somit $ord(ab)$ Teiler von $kgV(X,Y)$ sein muss. Andererseits hat $t$ die Form [mm] $m\frac{kgV(X,Y)}{ggT(X,Y)}=\frac{kgV(X,Y)}{\frac{ggT(X,Y)}{m}}$; [/mm] beide Bedingungen sind genau dann erfüllt, wenn $m$ Teiler von $ggT(X,Y)$ ist.


Liebe Grüße,
Hanno

Bezug
                
Bezug
gruppe: frage zur antwort
Status: (Frage) beantwortet Status 
Datum: 19:05 Sa 22.10.2005
Autor: tangye8152

wie folgt aus [mm] \bruch{x}{ggT(X,Y)}|t und\bruch{x}{ggT(X,Y)}t,dass [/mm]
[mm] |\bruch{kgV(X,Y)}{ggT(X,Y)}|t? [/mm]
ich bin noch nicht so klar

Bezug
                        
Bezug
gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:12 So 23.10.2005
Autor: angela.h.b.


> wie folgt aus [mm]\bruch{x}{ggT(X,Y)}|t und\bruch{x}{ggT(X,Y)}t,dass[/mm]
>  
> [mm]|\bruch{kgV(X,Y)}{ggT(X,Y)}|t?[/mm]
>  ich bin noch nicht so klar

Hallo,

es ist doch x=a*ggT(x,y) und y=b*ggt(x,y) mit ggt(a,b)=1, also teilerfremd.

> ... [mm] \bruch{x}{ggT(X,Y)} [/mm] | t [mm] und\bruch{x}{ggT(X,Y)}| [/mm] t,

<==> a|t und     b|t

Weil a und b teilerfremd sind, folgt  ab|t.

Was aber ist ab?   ab= [mm] \bruch{ab*ggT(x,y)}{ggT(x,y)}= \bruch{kgV(x,y)}{ggT(x,y)} [/mm]

Gruß v, Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de