www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - harmonische Funktion (?)
harmonische Funktion (?) < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

harmonische Funktion (?): Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:15 Mi 20.04.2005
Autor: Bastiane

Hallo ihrs! ;-)

Also, ich hab' hier noch ne Aufgabe, wo ich noch nich so wirklich viel mit anfangen kann:

Es sei u eine harmonische Funktion in einer Umgebung von [mm] G\subset\IR^n. [/mm] Zeige

(a) [mm] \integral_{\partial\;G}{\bruch{\partial\;u}{\partial\;v}\;dS} [/mm] =0;

(b) [mm] \integral_{\partial\;G}{u\bruch{\partial\;u}{\partial\;v}\;dS} [/mm] = [mm] \integral_{G}{||grad\;u||^2\;d^nx}. [/mm]

Daraus folgt: Falls G zusammenhängend ist und [mm] \partial_{v}u=0 [/mm] auf [mm] \partial\;G, [/mm] dann ist u konstant.

Womit hat das etwas zu tun? Wo könnte ich hier mal nachschlagen?

Viele Grüße und [gutenacht]

Bastiane
[banane]


        
Bezug
harmonische Funktion (?): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:06 Do 21.04.2005
Autor: pjoas

So ganz versteh ich die Frage nicht... harmonische Funktionen in einem Gebiet sind doch mindestens 2fach diffbar und auf dem Gebiet erfüllen sie die Laplace-Gleichung, also [mm] $\Delta [/mm] u(x,y)=0$ für [mm] $x,y\in [/mm] D$ - Analysis II bis III.
Oder in Funktionentheorie als Real bzw. Imaginärteil holomorpher Funktionen.

Gruß, Patrick

Als Tipp: harmonische Funktionen nehmen nur am Rand Extrema an.

Bezug
        
Bezug
harmonische Funktion (?): Brain storming
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:07 Do 21.04.2005
Autor: Peter_Pein

Hi Bastiane,

also mich erinnert das an das Maximumsprinzip der Komplexen Fkt.theorie

Gruß,
Peter

Bezug
        
Bezug
harmonische Funktion (?): Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 Fr 22.04.2005
Autor: moudi


> Hallo ihrs! ;-)
>  
> Also, ich hab' hier noch ne Aufgabe, wo ich noch nich so
> wirklich viel mit anfangen kann:
>  
> Es sei u eine harmonische Funktion in einer Umgebung von
> [mm]G\subset\IR^n.[/mm] Zeige
>  
> (a)
> [mm]\integral_{\partial\;G}{\bruch{\partial\;u}{\partial\;v}\;dS}[/mm]
> =0;
>  
> (b)
> [mm]\integral_{\partial\;G}{u\bruch{\partial\;u}{\partial\;v}\;dS}[/mm]
> = [mm]\integral_{G}{||grad\;u||^2\;d^nx}.[/mm]
>  
> Daraus folgt: Falls G zusammenhängend ist und
> [mm]\partial_{v}u=0[/mm] auf [mm]\partial\;G,[/mm] dann ist u konstant.
>  
> Womit hat das etwas zu tun? Wo könnte ich hier mal
> nachschlagen?

Hallo Bastiane

Das erinnert mich doch sehr an den allgemeinen Satz von Stokes rsp. an eine Anwendung davon.

mfG Moudi

>  
> Viele Grüße und [gutenacht]
>  
> Bastiane
>  [banane]
>  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de