www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - harmonische Wellen
harmonische Wellen < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

harmonische Wellen: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 11:40 Fr 16.11.2012
Autor: Infostudent

Hallo,

in meinem Buch ist die Wellenlänge [mm] \lambda [/mm] definiert als Abstand zweier benachbarter Oszillatoren, die in gleicher Phase schwingen. Die Ausbreitungsgeschwindigkeit [mm] c=\lambda/T [/mm] als Geschwindigkeit, mit der sich eine bestimmte Schwingungsphase bewegt.

Nun habe ich zwei Graphen für t=0 und t =0,2, aus denen ich diese Größen ableiten soll. Im ersten startet die Welle in x=0cm, hat ihren Wellenberg bei x=1,5cm, ihr Wellental bei x=4,5cm und erreiche bei x=6cm wieder ihren Ausgangszustand.
Im zweiten Graph ist die Welle um 1,5cm verschoben.

Nun wird die Wellenlänge als Abstand z.B. zweier Wellenberge innerhalb eines Graphs, also [mm] \lambda [/mm] = 7,5cm-1,5cm = 6cm, berechnet. So weit so gut.
Für die Ausbreitungsgeschwindigkeit gilt dann plötzlich [mm] c=\lambda/t [/mm] = 3cm/0,2s = 15cm/s. Warum ist [mm] \lambda [/mm] vorher 6cm und nun plötzlich 3cm? Ist das also gar keine absolute Größe?

        
Bezug
harmonische Wellen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Fr 16.11.2012
Autor: reverend

Hallo Infostudent,

> in meinem Buch ist die Wellenlänge [mm]\lambda[/mm] definiert als
> Abstand zweier benachbarter Oszillatoren, die in gleicher
> Phase schwingen. Die Ausbreitungsgeschwindigkeit
> [mm]c=\lambda/T[/mm] als Geschwindigkeit, mit der sich eine
> bestimmte Schwingungsphase bewegt.

T ist dabei die Schwingungsdauer!

> Nun habe ich zwei Graphen für t=0 und t =0,2, aus denen
> ich diese Größen ableiten soll. Im ersten startet die
> Welle in x=0cm, hat ihren Wellenberg bei x=1,5cm, ihr
> Wellental bei x=4,5cm und erreiche bei x=6cm wieder ihren
> Ausgangszustand.
>  Im zweiten Graph ist die Welle um 1,5cm verschoben.
>  
> Nun wird die Wellenlänge als Abstand z.B. zweier
> Wellenberge innerhalb eines Graphs, also [mm]\lambda[/mm] =
> 7,5cm-1,5cm = 6cm, berechnet. So weit so gut.

Damit und der Verschiebung zwischen den beiden Graphen kannst Du die Schwingungsdauer ermitteln. Sie beträgt 0,8s.

>  Für die Ausbreitungsgeschwindigkeit gilt dann plötzlich
> [mm]c=\lambda/t[/mm] = 3cm/0,2s = 15cm/s.

Nicht mit den vorliegenden Daten. Nach Deiner Beschreibung ist die Welle doch in 0,2s gerade 1,5cm weitergekommen.

Also ist [mm] c=\bruch{\Delta x}{\Delta t}=\bruch{1,5 cm}{0,2 s}=7,5\bruch{cm}{s}=\bruch{\lambda}{T}=\bruch{6 cm}{0,8 s} [/mm]

Schau Dir mal []dieses Beispiel an. Unten auf der Seite ist eine animierte Grafik, die man erst starten muss. Dazu gibts unter der Grafik entsprechende Aufgaben und einen Link zu den Lösungen.

> Warum ist [mm]\lambda[/mm] vorher
> 6cm und nun plötzlich 3cm? Ist das also gar keine absolute
> Größe?

Doch, [mm] \lambda [/mm] ist eine absolute Größe, sofern keine Frequenzmodulation vorliegt. ;-)
Für die Wellenausbreitung ist aber davon auszugehen, dass jede einzelne Welle ab dem Verlassen des Erregers (bzw. "Senders") ihre Form beibehält, und damit sowohl die Schwingungslänge [mm] \lambda [/mm] als auch die Schwingungsdauer $T$.

Trotzdem kann ich die Dir vorliegende Lösung so nicht nachvollziehen, siehe oben.

Grüße
reverend


Bezug
                
Bezug
harmonische Wellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:39 Fr 16.11.2012
Autor: Infostudent

Mein Fehler, die Welle im zweiten Graph ist nicht um 1,5cm sondern um 3cm verschoben. Daher auch [mm] \lambda [/mm] = 3cm in der Formel zur Berechnung von c. Trotzdem benutzt man 1. bei der Berechnung der Wellenlänge und 2. der Berechnung von c mMn unterschiedliche [mm] \lambda, [/mm] kennzeichnet diese aber als ein und dieselbe Größe.
Im ersten Fall bezeichnet [mm] \lambda [/mm] die Distanz zwischen zwei Oszillatoren, die in derselben Phase schwingen, im zweiten Fall betrachtet man die zeitliche Entwicklung der Welle und dort ist [mm] \lambda [/mm] dann nur halb so groß wie vorher. Welches ist denn nun das "richtige" [mm] \lambda? [/mm]

Bezug
                        
Bezug
harmonische Wellen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Fr 16.11.2012
Autor: reverend

Hallo nochmal,

> Mein Fehler, die Welle im zweiten Graph ist nicht um 1,5cm
> sondern um 3cm verschoben.

Ok, das erklärt die Diskrepanz.

> Daher auch [mm]\lambda[/mm] = 3cm in der
> Formel zur Berechnung von c.

Das heißt auch [mm] \lambda? [/mm] Das ist äußerst ungeschickt. Ich habe darum [mm] $\Delta [/mm] x$ geschrieben.

> Trotzdem benutzt man 1. bei
> der Berechnung der Wellenlänge und 2. der Berechnung von c
> mMn unterschiedliche [mm]\lambda,[/mm] kennzeichnet diese aber als
> ein und dieselbe Größe.

Ich habe ja das Buch bzw. Skript o.ä. nicht vorliegen, kann das also nicht beurteilen. Wenn aber tatsächlich beide Male [mm] \lambda [/mm] verwendet wird, so ist das schlicht falsch.

>  Im ersten Fall bezeichnet [mm]\lambda[/mm] die Distanz zwischen
> zwei Oszillatoren, die in derselben Phase schwingen, im
> zweiten Fall betrachtet man die zeitliche Entwicklung der
> Welle und dort ist [mm]\lambda[/mm] dann nur halb so groß wie
> vorher. Welches ist denn nun das "richtige" [mm]\lambda?[/mm]  

Das kann man sich ja zurechtdefinieren.
Üblich allerdings ist es, [mm] \lambda [/mm] für die Distanz zweier gleicher Phasen zu nehmen, also eine Periodenlänge der (wie auch immer gearteten periodischen) Schwingung; so auch auf der Seite, die ich Dir vorhin verlinkt habe.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de