www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - hinreichendes Krit. für Stetig
hinreichendes Krit. für Stetig < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

hinreichendes Krit. für Stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:29 Mo 15.11.2010
Autor: lakritzstange

Aufgabe
Es sei f: [mm] \IR \to \IR [/mm] eine Funktion.
Es gelte |f(x)|<= |x| für alle x [mm] \in \IR. [/mm] Zeige, dass f in [mm] x_{0}=0 [/mm] stetig ist mit f(0)=0.

Hallo,

ich komme mit obiger Aufgabenstellung überhaupt nicht klar.
Das ungleich zeichen bedeutet doch, dass der Funktionswert immer kleiner oder gleich dem x-Wert ist.
ich weiß jetzt aber nicht wie ich den Stetigkeitsbeweis beginnen soll. Ich darf doch jetzt nicht f(0)=0 nehmen, da ich das ja zu beweisen habe oder lieg ich da falsch?

Vielen Dank für eure Hilfe.
LG Lakritzstange

        
Bezug
hinreichendes Krit. für Stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 09:46 Mo 15.11.2010
Autor: schachuzipus

Hallo lakritzstange,

> Es sei f: [mm]\IR \to \IR[/mm] eine Funktion.
> Es gelte |f(x)|<= |x| für alle x [mm]\in \IR.[/mm] Zeige, dass f
> in [mm]x_{0}=0[/mm] stetig ist mit f(0)=0.
> Hallo,
>
> ich komme mit obiger Aufgabenstellung überhaupt nicht
> klar.
> Das ungleich zeichen bedeutet doch, dass der Funktionswert
> immer kleiner oder gleich dem x-Wert ist.
> ich weiß jetzt aber nicht wie ich den Stetigkeitsbeweis
> beginnen soll. Ich darf doch jetzt nicht f(0)=0 nehmen, da
> ich das ja zu beweisen habe oder lieg ich da falsch?

Nun, wenn [mm]f[/mm] in 0 definiert ist, so ist [mm]f(0)=0[/mm], denn nach Vor. ist [mm]|f(x)|\le|x|[/mm] ...

Also [mm]|f(0)|\ge 0[/mm] nach Def. [mm]|\cdot|[/mm] und [mm]|f(0)|\le 0[/mm] nach Vor., damit [mm]|f(0)|=0[/mm] ...

Ansonsten bemühe das [mm]\varepsilon-\delta[/mm]-Kriterium der Stetigkeit ...

>
> Vielen Dank für eure Hilfe.
> LG Lakritzstange


Bezug
                
Bezug
hinreichendes Krit. für Stetig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:48 Mo 15.11.2010
Autor: fred97


> Hallo lakritzstange,
>  
> > Es sei f: [mm]\IR \to \IR[/mm] eine Funktion.
>  > Es gelte |f(x)|<= |x| für alle x [mm]\in \IR.[/mm] Zeige, dass f

> > in [mm]x_{0}=0[/mm] stetig ist mit f(0)=0.
>  > Hallo,

>  >

> > ich komme mit obiger Aufgabenstellung überhaupt nicht
> > klar.
> > Das ungleich zeichen bedeutet doch, dass der Funktionswert
> > immer kleiner oder gleich dem x-Wert ist.
> > ich weiß jetzt aber nicht wie ich den Stetigkeitsbeweis
> > beginnen soll. Ich darf doch jetzt nicht f(0)=0 nehmen, da
> > ich das ja zu beweisen habe oder lieg ich da falsch?
>  
> Nun, wenn [mm]f[/mm] in 0 definiert ist, so ist [mm]f(0)=0[/mm], denn nach
> Vor. ist [mm]|f(x)|\le|x|[/mm] ...
>  
> Also [mm]|f(0)|\ge 0[/mm] nach Def. [mm]|\cdot|[/mm] und [mm]|f(0)|\le 0[/mm] nach
> Vor., damit [mm]|f(0)|=0[/mm] ...
>  
> Ansonsten bemühe das [mm]\varepsilon-\delta[/mm]-Kriterium der
> Stetigkeit ...


...................  oder das Folgenkriterium .............


FRED

>  
> >
> > Vielen Dank für eure Hilfe.
>  > LG Lakritzstange

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de