www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - holomorphe Funktionen
holomorphe Funktionen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

holomorphe Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 Mi 03.12.2008
Autor: gnom

Aufgabe
Es gibt keine holomorphe Funktion f:C->C mit der Eigenschaft

f(C)={z Element C: Im z>0, Re z>=}

Hallo an alle,

meine Fragen zu dieser Aufgabe.
Es ist für jede holomorphe Funktion f:C->C durch g:C->C ; z-> exp(-f(z)) eine holomorphe Funktion gegeben. Warum ist das so? und Warum wähle ich hier z-> exp(-f(z))  und nicht z-> exp(+f(z)) ?

wenn ich mir jetzt [mm]|g(z)| = | e^{-f(z)}|= e^{-Re f(z)}[/mm] anschaue, dann kann ich [mm]e^{-Re f(z)}<=1[/mm]  abschätzen.
Aber warum ist [mm]e^{-Re f(z)}[/mm]  kleiner gleich 1. das verstehe ich nicht?

Daraus folgt dann dass, das Bild von g beschränkt ist.

Nach Satz von Liouville ist g dann konstant.

Hoffe ihr könnt mir helfen.

Grüße gnom

        
Bezug
holomorphe Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Mi 03.12.2008
Autor: fred97


> Es gibt keine holomorphe Funktion f:C->C mit der
> Eigenschaft
>  
> f(C)={z Element C: Im z>0, Re z>=}

Was steht hier ? Re z [mm] \ge [/mm] 0 ? Wenn ja, so ist die Frage einfach zu beantworten:

Die Menge { z [mm] \in \IC [/mm] : Imz>0, Re z [mm] \ge [/mm] 0} ist nicht offen.

Für eine holomorphe Fkt. f [mm] \IC [/mm] --> [mm] \IC [/mm] ist aber [mm] f(\IC) [/mm] offen oder einelementig.


FRED


>  Hallo an alle,
>  
> meine Fragen zu dieser Aufgabe.
> Es ist für jede holomorphe Funktion f:C->C durch g:C->C ;
> z-> exp(-f(z)) eine holomorphe Funktion gegeben. Warum ist
> das so? und Warum wähle ich hier z-> exp(-f(z))  und nicht
> z-> exp(+f(z)) ?
>  
> wenn ich mir jetzt [mm]|g(z)| = | e^{-f(z)}|= e^{-Re f(z)}[/mm]
> anschaue, dann kann ich [mm]e^{-Re f(z)}<=1[/mm]  abschätzen.
> Aber warum ist [mm]e^{-Re f(z)}[/mm]  kleiner gleich 1. das verstehe
> ich nicht?
>  
> Daraus folgt dann dass, das Bild von g beschränkt ist.
>  
> Nach Satz von Liouville ist g dann konstant.
>  
> Hoffe ihr könnt mir helfen.
>  
> Grüße gnom


Bezug
                
Bezug
holomorphe Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 Mi 03.12.2008
Autor: gnom

Sorry, die Angabe heißt: Es gibt keine holomorphe Funktion mit der Eigenschaft: f(C)={z Element C: Im z>0, Re z>0}

meine Fragen zu dieser Aufgabe.
Es ist für jede holomorphe Funktion f:C->C durch g:C->C ;  z-> exp(-f(z)) eine holomorphe Funktion gegeben. Warum ist
das so? und Warum wähle ich hier z-> exp(-f(z))  und nicht
z-> exp(+f(z)) ?

>  >  

wenn ich mir jetzt [mm]|g(z)| = | e^{-f(z)}|= e^{-Re f(z)}[/mm]
anschaue, dann kann ich [mm]e^{-Re f(z)}<=1[/mm]  abschätzen.
Aber warum ist [mm]e^{-Re f(z)}[/mm]  kleiner gleich 1. das verstehe
ich nicht?
  
Daraus folgt dann dass, das Bild von g beschränkt ist.
  
Nach Satz von Liouville ist g dann konstant.

>  >  

Hoffe ihr könnt mir helfen.

> > Grüße gnom  


Bezug
                        
Bezug
holomorphe Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Mi 03.12.2008
Autor: fred97


> Sorry, die Angabe heißt: Es gibt keine holomorphe Funktion
> mit der Eigenschaft: f(C)={z Element C: Im z>0, Re z>0}
>  
> meine Fragen zu dieser Aufgabe.
> Es ist für jede holomorphe Funktion f:C->C durch g:C->C ;  
> z-> exp(-f(z)) eine holomorphe Funktion gegeben. Warum ist
> das so?

Die verkettung holomorpher Funktionen ist holomorph !

und Warum wähle ich hier z-> exp(-f(z))  und nicht

> z-> exp(+f(z)) ?


Weil Du mit der Wahl g(z) = [mm] e^{-f(z)} [/mm] die Aufgabe lösen kannst !!!!!



>  >  >  
> wenn ich mir jetzt [mm]|g(z)| = | e^{-f(z)}|= e^{-Re f(z)}[/mm]
> anschaue, dann kann ich [mm]e^{-Re f(z)}<=1[/mm]  abschätzen.
> Aber warum ist [mm]e^{-Re f(z)}[/mm]  kleiner gleich 1. das verstehe
> ich nicht?



Wir haben doch angenommen: f(C)={z Element C: Im z>0, Re z>0},

also ist Ref(z) > 0 für jedes z, somit -Ref(z) < 0 für jedes z, daher |g(z)| < 1 für jedes z. g ist also beschränkt



FRED





>    
> Daraus folgt dann dass, das Bild von g beschränkt ist.
>    
> Nach Satz von Liouville ist g dann konstant.
>  >  >  
> Hoffe ihr könnt mir helfen.
>  
> > > Grüße gnom  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de