www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - ich hab null ahnung hiervon :(
ich hab null ahnung hiervon :( < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ich hab null ahnung hiervon :(: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 Mo 21.06.2004
Autor: nora

jetzt muss ich schon wieder nen thread eröffnen, sorry. schreib bald ne matheklausur, und hab irgendwie keinen schimmer.
allein die sachen, die drankommen.. ich weiß nich, was genau ich dazu üben soll, oder was diese aufgaben beinhalten.
zb. linearfaktorenzerlegung und dikussion ganzrationaler funktionen. zb. (x²-4)= (x+2) (x-2).. was können da für aufgaben zu kommen? da bin ich ja aufgeflogen.
oder interpretation von funktionen und markanten punkten in funktionsgraphen in sachzusammenhängen. hö??
dann tangente u. normale. was kann da drankommen? ne tangente im graphen bestimmen?
oder kreis/geradengleichungen, orthogenolität von geraden, abstand 2er punkte in der ebene, entsprechende formeln,..
oder lineare regression.

oh gott, ich bin aufgeschmissen. kann mir hier jemand helfen?

        
Bezug
ich hab null ahnung hiervon :(: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Mo 21.06.2004
Autor: Fragezeichen


>  oder interpretation von funktionen und markanten punkten
> in funktionsgraphen in sachzusammenhängen. hö??

Markante Punkte sind eben Nullstellen, Hoch- bzw. Tiefpunkte, Wendestellen etc.
Dafür musst du die Funktion ableiten , ausser für die Nullstellen
[mm] f(x_n) = 0 [/mm]

[mm] f'(x_e) = 0 [/mm] sind dann die Extrema

dann musst du noch feststellen ob die zweite Ableitung an diesem Punkt grösser oder kleiner Null ist um festzustellen ob es ein hoch bzw. Tiefpunkt ist. Steht bestimmt in deinen Aufzeichnungen.

[mm] f''(x_w) = 0 [/mm]  sind die Wendepunkte wenn dann
[mm] f'''(x_w) \ne 0 [/mm]

>  dann tangente u. normale. was kann da drankommen? ne
> tangente im graphen bestimmen?

Eine Tangente ist nicht im Graphen sondern kann an den Graphen angelegt werden.
So ist zum Beispiel die steigung einer Tangente an einem Punkt des Graphen gleich der Steigung des Graphen. Die Normale steht senkrecht auf die Tangente... also ist die Steigung der Kehrwert von der der Tangente.

>  oder kreis/geradengleichungen, orthogenolität

Kreisgleichung ist wie beim Pythagoras: [mm] r^2 =x^2 + y^2 [/mm]

orthogonalität von geraden besagt das sie senkrecht aufeinander stehen

> abstand 2er punkte in der ebene, entsprechende formeln,..


Abstand zweier Punkte :
[mm][mm] \wurzel{(x_1-y_1)^2 + (x_2-y_2)^2+(x_3-y_3)^2} [/mm]


ich hoffe das hilft erst einmal zumindest ein bisschen viel Glück.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de