injektiv,surjektiv,bijektiv < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:20 Do 27.01.2011 | Autor: | Mandy_90 |
Aufgabe | Seien X,Y,Z nichtleere Mengen, f: X [mm] \to [/mm] Y und g:Y [mm] \to [/mm] Z Abbildungen.
Zeigen Sie: Ist f surjektiv und g [mm] \circ [/mm] f:X [mm] \to [/mm] Z bijektiv, so sind f und g bijektiv. |
Hallo,
ich bereite mich grad für die Klausur vor und rechne dafür ein paar Ünungsaufgaben, aber komme bei dieser nicht mehr weiter.
Ich weiß zunächst folgendes:
f surjektiv, d.h.: [mm] \forall [/mm] y [mm] \in [/mm] Y: [mm] \exists [/mm] x [mm] \in [/mm] X:f(x)=Y
g [mm] \circ [/mm] f bijektiv, d.h.: injektiv: g [mm] \circ [/mm] f(x1)=g [mm] \circ [/mm] f(x2) --> x1=x2 und surjektiv: [mm] \forall [/mm] z [mm] \in [/mm] Z: [mm] \exists [/mm] x [mm] \in [/mm] X:f(x)=Z.
Es gilt g [mm] \circ [/mm] f(x)=g(f(x))=Z, da f(x)=Y, weil f surjektiv ist, d.h. die Surjektivität von g ist gezeigt. Ich muss jetzt noch die Injektivität von f und g zeigen, da hab ich aber Probleme. Wenn ich schon wüsste, dass g injektiv, dann könnte ich auch zeigen, dass f injektiv ist, aber ich krieg die Inejktivität von g nicht hin. Könnte mir da vielleicht jemand einen Tipp geben?
Vielen Dank
lg
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:54 Do 27.01.2011 | Autor: | Lippel |
Hallo,
> Seien X,Y,Z nichtleere Mengen, f: X [mm]\to[/mm] Y und g:Y [mm]\to[/mm] Z
> Abbildungen.
> Zeigen Sie: Ist f surjektiv und g [mm]\circ[/mm] f:X [mm]\to[/mm] Z
> bijektiv, so sind f und g bijektiv.
> Hallo,
>
> ich bereite mich grad für die Klausur vor und rechne
> dafür ein paar Ünungsaufgaben, aber komme bei dieser
> nicht mehr weiter.
> Ich weiß zunächst folgendes:
>
> f surjektiv, d.h.: [mm]\forall[/mm] y [mm]\in[/mm] Y: [mm]\exists[/mm] x [mm]\in[/mm] X:f(x)=Y
>
> g [mm]\circ[/mm] f bijektiv, d.h.: injektiv: g [mm]\circ[/mm] f(x1)=g [mm]\circ[/mm]
> f(x2) --> x1=x2 und surjektiv: [mm]\forall[/mm] z [mm]\in[/mm] Z: [mm]\exists[/mm] x
> [mm]\in[/mm] X:f(x)=Z.
>
> Es gilt g [mm]\circ[/mm] f(x)=g(f(x))=Z, da f(x)=Y, weil f surjektiv
> ist, d.h. die Surjektivität von g ist gezeigt.
Ich sehe nicht, dass hier irgendetwas gezeigt wurde. Aus der Surjektivität von f allein kannst du nicht folgern, dass g surjektiv ist! Außerdem wendest du $g [mm] \circ [/mm] f$ auf eine Element $x [mm] \in [/mm] X$ an und bekommst eine Menge raus, das Bild eines Elements unter einer Abbildung darf aber immer nur ein Element aus dem Bildbereich sein, nie mehrere!
Nehme einfach mal an, g wäre nicht surjektiv. Dann gibt es ein $z [mm] \in [/mm] Z$, sodass es kein $y [mm] \in [/mm] Y$ gibt mit $g(y) = z$. Damit kannst du dir einen Widerspruch zur Bijektivität von $g [mm] \circ [/mm] f$ konstruieren, die ja vorausgesetzt ist.
> Ich muss
> jetzt noch die Injektivität von f und g zeigen, da hab ich
> aber Probleme. Wenn ich schon wüsste, dass g injektiv,
> dann könnte ich auch zeigen, dass f injektiv ist, aber ich
> krieg die Inejktivität von g nicht hin. Könnte mir da
> vielleicht jemand einen Tipp geben?
1. f injektiv:
Wir nehmen an, f wäre nicht injektiv [mm] $\Rightarrow \exists x_1, x_2 \in [/mm] X: [mm] f(x_1) [/mm] = [mm] f(x_2) \ldots$ [/mm] (versuche hier mal selbst weiter zu kommen)
2. g injektiv:
Wieder angenommen, g wäre nicht injektiv [mm] $\Rightarrow \exists y_1, y_2 \in [/mm] Y: [mm] g(y_1)=g(y_2) \Rightarrow$ [/mm] da f surjektiv gibt es [mm] $x_1, x_2 \in [/mm] X: [mm] f(x_1)=y_1, f(x_2)=y_2 \ldots$ [/mm] (überlege dir, was damit für $g [mm] \circ [/mm] f [mm] (x_1)$ [/mm] und $g [mm] \circ [/mm] f [mm] (x_2)$ [/mm] folgt, du erhälst einen Widerspruch zur Voraussetzung.
Du siehst vielleicht an meinem Vorgehen, dass es bei diesem Typ von Aufgaben günstig ist, Widerspruchsbeweise zu führen.
LG Lippel
|
|
|
|