www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - injektive Abbildung
injektive Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

injektive Abbildung: Beweis,
Status: (Frage) beantwortet Status 
Datum: 22:40 Mi 06.05.2009
Autor: Balendilin

Aufgabe
Sei M eine Menge. Dann sind die folgenden Aussagen äquivalent:

(1) M ist nicht endlich.
(2) es gibt ein y [mm] \in [/mm] M und eine injektive Abbildung f: M [mm] \to [/mm] M mit f(x) [mm] \not= [/mm] y, für alle x [mm] \in [/mm] M.

Hallo,

soweit ich das verstehe, bedeutet (2), dass f nicht surjektiv ist. Und ich verstehe auch, wie ich von (2) auf (1) schließen kann. Aber ich komme bei der "Hin-Richtung" nicht weiter.
Kann mir bitte jemand helfen, wie ich von (1) auf (2) schließen kann?
Vielen Dank!

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
injektive Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 02:00 Do 07.05.2009
Autor: Marcel

Hallo,

> Sei M eine Menge. Dann sind die folgenden Aussagen
> äquivalent:
>  
> (1) M ist nicht endlich.
>  (2) es gibt ein y [mm]\in[/mm] M und eine injektive Abbildung f: M
> [mm]\to[/mm] M mit f(x) [mm]\not=[/mm] y, für alle x [mm]\in[/mm] M.
>  Hallo,
>  
> soweit ich das verstehe, bedeutet (2), dass f nicht
> surjektiv ist. Und ich verstehe auch, wie ich von (2) auf
> (1) schließen kann. Aber ich komme bei der "Hin-Richtung"
> nicht weiter.
>  Kann mir bitte jemand helfen, wie ich von (1) auf (2)
> schließen kann?

probiere es mit einem Beweis durch Kontraposition. Wenn (2) nicht gilt, dann heißt das:
Für jedes $y [mm] \in [/mm] M$ gilt: Ist $f: M [mm] \to [/mm] M$ eine Injektion, so gibt es ein [mm] $x_0 \in [/mm] M$ mit [mm] $f(x_0)=y\,.$ [/mm] Eine jede Injektion $f: M [mm] \to [/mm] M$ ist also auch surjektiv und damit bijektiv. Jetzt wäre also nur noch zu begründen, dass dies' die Endlichkeit von [mm] $M\,$ [/mm] impliziert.
Je nach Definition des Begriffes der Endlichkeit einer Menge kann es nun so sein, dass das bei Euch per Definitionem so ist (per Definitionem hieße dann [mm] $M\,$ [/mm] genau dann endlich, wenn jede Injektion $f: M [mm] \to [/mm] M$ schon surjektiv ist).

Es gibt aber durchaus auch den Satz, dass eine Menge genau dann endlich ist, wenn jede Injektion $f: M [mm] \to [/mm] M$ schon surjektiv ist. Dann wäre vermutlich definiert:
[mm] $(\star)$ $M\,$ [/mm] heißt endlich, wenn es eine Zahl $N [mm] \in \IN$ [/mm] gibt, so dass eine Injektion $f: M [mm] \to \{1,\,\ldots,\,N\}$ [/mm] existiert. Ist dann $n [mm] \in \IN$ [/mm] die kleinste Zahl, so dass eine Injektion $f: M [mm] \to \{1,\,\ldots,\,n\}$ [/mm] existiert, so heißt [mm] $\,|M|:=n$ [/mm] die Anzahl der Elemente von [mm] $\,M\,.$ [/mm]
Falls ihr den Begriff der Endlichkeit einer Menge nicht wie in dem blauen Satz oben definiert habt, hast Du also noch was zu tun. Andernfalls bist Du fertig.

(Dann hättest Du gezeigt: Wenn (2) nicht gilt, dann gilt (1) nicht. Wegen Kontraposition ist [mm] '$(\neg [/mm] B) [mm] \Rightarrow (\neg [/mm] A)$' äquivalent zu '$A [mm] \Rightarrow [/mm] B$', also wäre damit gezeigt, dass (1) die Aussage (2) impliziert).

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de