www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - inkongruente typen
inkongruente typen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

inkongruente typen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:34 Do 04.03.2010
Autor: csak1162

Aufgabe
Die Kurven y = sin(2x) und y = cos(x) begrenzen zwischen aufeinanderfolgenden Schnittpunkten versch. Flächenstücke.
Begründe mittels der Eigenschaften von cos, dass darunter genau 2 inkongruente Typen existieren.

was bedeutet das mit den inkongruente typen verstehe nicht was gemeint ist, und wie zeige ich das mit cos???

danke lg

        
Bezug
inkongruente typen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Do 04.03.2010
Autor: steppenhahn

Hallo!

kongruente Flächen: Die Flächen sind deckungsgleich, können also durch Drehung und Spiegelung ineinander überführt werden.

inkongruente Flächen: Nicht kongruente Flächen.

> Die Kurven y = sin(2x) und y = cos(x) begrenzen zwischen
> aufeinanderfolgenden Schnittpunkten versch.
> Flächenstücke.
>  Begründe mittels der Eigenschaften von cos, dass darunter
> genau 2 inkongruente Typen existieren.

Es geht also darum, dass du zeigen sollst, dass genau zwei verschiedene Arten von Flächen von den beiden Funktionen begrenzt werden.
Wenn du dir mal den Plot ansiehst, siehst du, dass es eine "dünne", kleine Fläche gibt, und eine größere.

>  was bedeutet das mit den inkongruente typen verstehe nicht
> was gemeint ist, und wie zeige ich das mit cos???

Nun, du solltest mit der Periodizität der beiden Funktionen arbeiten.
Nimm' dir zum Beispiel das Intervall [mm] $[\pi/2,3*\pi/2]$. [/mm] Darin kommt jeder Flächen-Typ genau einmal vor.
Das kannst du damit begründen, dass an den Enden des Intervalls jeweils Nullstellen der beiden Funktionen liegen (sie sich also dort schneiden) und auch in der Mitte des Intervalls irgendwo noch ein Schnittpunkt liegen muss (warum?)

Nun musst du begründen, warum im darauffolgenden Intervall mit Länge [mm] \pi, $[3*\pi/2, 5*\pi/2]$, [/mm] genau dieselben Flächen entstehen.

Dann kannst du argumentieren: Da du nun gezeigt hast, dass in einem Intervall mit der Länge [mm] 2*\pi [/mm] nur diese Flächenarten auftreten, und [mm] \cos(x) [/mm] und [mm] \sin(2*x) [/mm] jeweils [mm] 2*\pi [/mm] - periodisch sind, haben auch die restlichen Flächen diese Form.

[mm] (\sin(2*x) [/mm] ist natürlich [mm] \pi-periodisch, [/mm] aber deswegen auch [mm] 2*\pi-periodisch! \pi [/mm] ist nur die kleinste Periode.)

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de