www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - integral
integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:09 Mi 04.11.2009
Autor: martina.m18

hallo ,

habe folgende formel I(t)= [mm] I_0 cos(w*t)*e^{-t/\tau} [/mm]

die transportierte Ladungsmenge soll errechnet werden..

[mm] Q=I_0\integral [/mm] I(t)

so wie kann ich am besten vorgehen, 2xpartiell integrieren mit substitution ? mein e wird nicht verschwinden und mein cos(wt) auch nicht, ich habe keine ahnung wie ich das packet behandeln muss, kann mir irgendwer eine hilfe bzw tipp hierfür geben,,, vielen dank......

        
Bezug
integral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Mi 04.11.2009
Autor: MathePower

Hallo martina.m18,


> hallo ,
>  
> habe folgende formel I(t)= [mm]I_0 cos(w*t)*e^{-t/\tau}[/mm]
>  
> die transportierte Ladungsmenge soll errechnet werden..
>  
> [mm]Q=I_0\integral[/mm] I(t)
>  
> so wie kann ich am besten vorgehen, 2xpartiell integrieren
> mit substitution ? mein e wird nicht verschwinden und mein
> cos(wt) auch nicht, ich habe keine ahnung wie ich das
> packet behandeln muss, kann mir irgendwer eine hilfe bzw
> tipp hierfür geben,,, vielen dank......


Die Idee mit der zweimaligen Anwendung der partiellen Integration
ist richtig,  aber dann ohne Substitution.

Wenn Du allerdings die komplexe Rechnung verwendest,
dann ist die Berechnung des Integrals wesentlich einfacher.

Zu Beachten ist hier allerdings, daß der Realteil dieser Stammfunktion
das in der Aufgabe gestellte Integral löst.


Gruss
MathePower

Bezug
                
Bezug
integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 Mi 04.11.2009
Autor: martina.m18

$ [mm] I_0 cos(w\cdot{}t)\cdot{}e^{-t/\tau} [/mm] $

[mm] Q\integral I_0 cos(w\cdot{}t)\cdot{}e^{-t/\tau} [/mm]
[mm] I_0\integral cos(w\cdot{}t)\cdot{}e^{-t/\tau} [/mm]

u´=cos(wt)     [mm] v=e^{-t/\tau} [/mm]

I.) u*v - [mm] \integral [/mm] u* v´
[mm] =-sin(w*t)1/w*e^{-t/\tau}-\integral -sin(w*t)1/w*-\tau*e^{-t/\tau} [/mm]

hallo danke für die bisherige bearbeitung, ist mein ansatz so richtig kann ich so weiterrechnen?
[mm] =-sin(w*t)1/w*e^{-t/\tau} [/mm]


Bezug
                        
Bezug
integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 Mi 04.11.2009
Autor: MathePower

Hallo martina.m18,

> [mm]I_0 cos(w\cdot{}t)\cdot{}e^{-t/\tau}[/mm]
>  
> [mm]Q\integral I_0 cos(w\cdot{}t)\cdot{}e^{-t/\tau}[/mm]
>  
> [mm]I_0\integral cos(w\cdot{}t)\cdot{}e^{-t/\tau}[/mm]
>  
> u´=cos(wt)     [mm]v=e^{-t/\tau}[/mm]
>  
> I.) u*v - [mm]\integral[/mm] u* v´
>  [mm]=-sin(w*t)1/w*e^{-t/\tau}-\integral -sin(w*t)1/w*-\tau*e^{-t/\tau}[/mm]


Statt v zu differenzieren, hast Du hier v integriert:

[mm]=-sin(w*t)1/w*e^{-t/\tau}-\integral_{}^{}{-sin(w*t)1/w*\red{\left(-\bruch{1}{\tau}\right)*e^{-t/\tau}} \ dt}[/mm]


>  
> hallo danke für die bisherige bearbeitung, ist mein ansatz
> so richtig kann ich so weiterrechnen?
>  [mm]=-sin(w*t)1/w*e^{-t/\tau}[/mm]
>  


Gruss
MathePower

Bezug
                                
Bezug
integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 Do 05.11.2009
Autor: martina.m18

[mm] =I_0*[-sin(w\cdot{}t)1/w\cdot{}e^{-t/\tau}-\integral_{}^{}{-sin(w\cdot{}t)1/w\cdot{}{\left(-\bruch{1}{\tau}\right)\cdot{}e^{-t/\tau}} \ dt} [/mm] ]

[mm] =I_0 *[-sin(w*t)1/w*e^-t/\tau [/mm] + cos(w*t) [mm] 1/w^2 *(\bruch{1}{\tau})*e^{-t/\tau}+\integral cos(w*t)*1/w^2*(\bruch{1}{\tau^2})*e^{-t/\tau} [/mm] dt]

ich kann die funktion nie zerlegen da ich durch die part. integ. meine e bzw cos funktion nicht beseitigen kann. wie muss ich jetzt weitermachen, wenn ich z.b meine integrationsgrenzen [mm] t_1 [/mm] und [mm] t_0 [/mm] einsetzen möchte. vielen dank im voraus

Bezug
                                        
Bezug
integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Do 05.11.2009
Autor: MathePower

Hallo martina.m18,

>  
> [mm]=I_0*[-sin(w\cdot{}t)1/w\cdot{}e^{-t/\tau}-\integral_{}^{}{-sin(w\cdot{}t)1/w\cdot{}{\left(-\bruch{1}{\tau}\right)\cdot{}e^{-t/\tau}} \ dt}[/mm]
> ]
>  
> [mm]=I_0 *[-sin(w*t)1/w*e^-t/\tau[/mm] + cos(w*t) [mm]1/w^2 *(\bruch{1}{\tau})*e^{-t/\tau}+\integral cos(w*t)*1/w^2*(\bruch{1}{\tau^2})*e^{-t/\tau}[/mm]
> dt]


Hier haben sich mehrere Vorzeichenfehler eingeschlichen:

[mm]=I_0 *[\red{+}sin(w*t)1/w*e^-t/\tau \red{-} cos(w*t) 1/w^2 *(\bruch{1}{\tau})*e^{-t/\tau}\red{-}\integral_{}^{}{ cos(w*t)*1/w^2*(\bruch{1}{\tau^2})*e^{-t/\tau} \ dt}[/mm]


>  
> ich kann die funktion nie zerlegen da ich durch die part.
> integ. meine e bzw cos funktion nicht beseitigen kann. wie
> muss ich jetzt weitermachen, wenn ich z.b meine
> integrationsgrenzen [mm]t_1[/mm] und [mm]t_0[/mm] einsetzen möchte. vielen
> dank im voraus


Nun, Du stellst jetzt fest, daß der Integrand im Integral auf der rechten Seite eine ähnliche Gestalt hat, wie der Integrand des Ausgangsintegrals.

Bringe deshalb dieses Integral auf die linke Seite,
und Du kannst die Stammfunktion des Ausgangsintegrals angeben.

Natürlich kannst Du die partielle Integration auch mit vorgegebenen Grenzen durchführen.


Gruss
MathePower

Bezug
                                                
Bezug
integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:06 Fr 06.11.2009
Autor: martina.m18

hallo mathepower,
danke für deine hilfe:

$ [mm] =I_0 \cdot{}[\red{+}sin(w\cdot{}t)1/w\cdot{}e^-t/\tau \red{-} cos(w\cdot{}t) 1/w^2 \cdot{}(\bruch{1}{\tau})\cdot{}e^{-t/\tau}\red{-}\integral_{}^{}{ cos(w\cdot{}t)\cdot{}1/w^2\cdot{}(\bruch{1}{\tau^2})\cdot{}e^{-t/\tau} \ dt} [/mm] $

.... also ich löse jetzt auf dividiere auf beiden Seiten das [mm] I_O [/mm] weg und ziehe durch mein integral zunächst auf die linke seit

[mm] \integral [/mm] cos(w*t) [mm] *e^{-t/\tau} [/mm] * [mm] (1+1/\tau²*w²)=\cdot{}[\red{+}sin(w\cdot{}t)1/w\cdot{}e^-t/\tau \red{-} cos(w\cdot{}t) 1/w^2 \cdot{}(\bruch{1}{\tau})\cdot{}e^{-t/\tau}] [/mm]
ich vereinfache
[mm] =I_0[ e^{-t/\tau}*\bruch{1}{w}*\bruch{sin(w*t)-cos(w*t)*\bruch{1}{(w*\tau)}}{(1+\bruch{1}{(w*\tau)^2})}] [/mm]

habe irgendwie die vermutung das die stammfunktion immer noch nicht stimmt.
gruss martina....

Bezug
                                                        
Bezug
integral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:03 Fr 06.11.2009
Autor: MathePower

Hallo martina.m18,

> hallo mathepower,
>  danke für deine hilfe:
>  
> [mm]=I_0 \cdot{}[\red{+}sin(w\cdot{}t)1/w\cdot{}e^-t/\tau \red{-} cos(w\cdot{}t) 1/w^2 \cdot{}(\bruch{1}{\tau})\cdot{}e^{-t/\tau}\red{-}\integral_{}^{}{ cos(w\cdot{}t)\cdot{}1/w^2\cdot{}(\bruch{1}{\tau^2})\cdot{}e^{-t/\tau} \ dt}[/mm]
>  
> .... also ich löse jetzt auf dividiere auf beiden Seiten
> das [mm]I_O[/mm] weg und ziehe durch mein integral zunächst auf die
> linke seit
>  
> [mm]\integral[/mm] cos(w*t) [mm]*e^{-t/\tau}[/mm] *
> [mm](1+1/\tau²*w²)=\cdot{}[\red{+}sin(w\cdot{}t)1/w\cdot{}e^-t/\tau \red{-} cos(w\cdot{}t) 1/w^2 \cdot{}(\bruch{1}{\tau})\cdot{}e^{-t/\tau}][/mm]
>  
> ich vereinfache
>  [mm]=I_0[ e^{-t/\tau}*\bruch{1}{w}*\bruch{sin(w*t)-cos(w*t)*\bruch{1}{(w*\tau)}}{(1+\bruch{1}{(w*\tau)^2})}][/mm]
>  
> habe irgendwie die vermutung das die stammfunktion immer
> noch nicht stimmt.


Die Stammfunktion stimmt. [ok]

Jetzt kannst Du das noch etwas handlicher schreiben,
z.B. mit [mm]w^{2}*\tau^{2}[/mm] durchmultiplizieren.


>  gruss martina....


Gruss
MathePower

Bezug
                                                                
Bezug
integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:04 Fr 06.11.2009
Autor: martina.m18

vielen dank für deine hilfe
lg
martina

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de