www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - integral diffbar
integral diffbar < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integral diffbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 Do 05.02.2009
Autor: MissPocahontas

Aufgabe
Sei f: R --> R stetig und seien g,h : R--> R diffbar. Zeigen Sie, dass die Funktion F: R-->R , F(x) = [mm] \integral_{g(x)}^{h(x)}{f(t) dt} [/mm] differenzierbar ist und berechnen Sie die Ableitung von F`von F.  

Hey ;-)

Ich hab bei folgender Aufgabe ein Problem. Die Ableitung zu berechnen ist ja kein Problem, da die ja schon fast im Integral steht.Mein Problem is es die differenzierbarkeit zu beweisen. ich hab mir mal aufgeschrieben, wass F(x) genau ist und dann hab ichs auch mit dem Differenzenquotienten versucht, aber ich weiß ja nicht, dass f auch diffbar ist... das is iwie mein problem an der ganzen Sache..

Lg,
Melanie

        
Bezug
integral diffbar: Kettenregel
Status: (Antwort) fertig Status 
Datum: 17:32 Do 05.02.2009
Autor: Al-Chwarizmi


> Sei f: R --> R stetig und seien g,h : R--> R diffbar.
> Zeigen Sie, dass die Funktion F: R-->R , F(x) =
> [mm]\integral_{g(x)}^{h(x)}{f(t) dt}[/mm] differenzierbar ist und
> berechnen Sie die Ableitung von F'von F.


Hallo Melanie,

Da f stetig ist, ist f integrierbar, es gibt also eine
Stammfunktion  S  (ich nenne sie so, weil F für
einen anderen Zweck reserviert ist) mit S'(x)=f(x)
für alle [mm] x\in\IR. [/mm]

Dann ist  F(x)=S(h(x))-S(g(x))

Da S und g und h differenzierbar sind, sagt die
[]Kettenregel und die Regel über die Ableitung
einer Differenz von Funktionen, dass auch F
differenzierbar sein muss. Mittels dieser Regeln
kann man auch die Ableitung F'(x) hinschreiben.

LG  


Bezug
                
Bezug
integral diffbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:14 Do 05.02.2009
Autor: MissPocahontas

Hey,
jep das klingt durchaus logisch;). Ich danke dir.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de