www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - integral mit e
integral mit e < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integral mit e: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:32 Fr 16.04.2010
Autor: isabel-f

hey, ich hab ne frage, und zwar ob meine rechnung so stimmt.

die integralaufgabe lautet [mm] \integral_{1}^{e}{(2/x + 4x) dx} [/mm]

meine Stammfunktion ist dann [mm] 2*x^0 [/mm] + 2x² = [mm] 2*e^0 [/mm] +2e² -(2+2)=2+2e²-4=-2+2e²

stimmt das so????
bitte schnelle antwort!

        
Bezug
integral mit e: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Fr 16.04.2010
Autor: schachuzipus

Hallo isabel-f,

> hey, ich hab ne frage, und zwar ob meine rechnung so
> stimmt.
>  
> die integralaufgabe lautet [mm]\integral_{1}^{e}{(2/x + 4x) dx}[/mm]
>  
> meine Stammfunktion ist dann [mm]2*x^0[/mm] [notok]+ 2x² = [mm]2*e^0[/mm] +2e²
> -(2+2)=2+2e²-4=-2+2e²
>  
> stimmt das so????
>  bitte schnelle antwort!

Drängeln ist nicht die feine Art und hier im Forum überhaupt gar nicht gerne gesehen!!!

Die Potenzregel für das Integrieren, also [mm] $\int{x^n \ dx}=\frac{1}{n+1}x^{n+1} [/mm] \ [mm] \left(+c\right)$ [/mm] gilt für alle reellen [mm] $n\neq [/mm] -1$

Das Integral für $n=-1$, also [mm] $\int{x^{-1} \ dx}=\int{\frac{1}{x} \ dx}$ [/mm] hat eine Sonderstellung.

Das musst du dir merken!

Es ist [mm] $\int{\frac{1}{x} \ dx}=\ln(|x|) [/mm] \ [mm] \left(+c\right)$ [/mm]

Gruß

schachuzipus


Bezug
                
Bezug
integral mit e: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 Fr 16.04.2010
Autor: isabel-f

danke für die schnelle antwort. ja es tut mir leid..ich habs nicht so gemeint.

ok, ich wusste, dass da irgendwas anders ist. aber wenn ich für 2/x als stammfunktion dann 2*ln(x) bekomme und e für x einsetze, kommt doch das gleiche ergebnis heraus, wie bei meiner rechnung!? oder?

Bezug
                        
Bezug
integral mit e: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 Fr 16.04.2010
Autor: schachuzipus

Hallo nochmal,

> danke für die schnelle antwort. ja es tut mir leid..ich
> habs nicht so gemeint.
>  
> ok, ich wusste, dass da irgendwas anders ist. aber wenn ich
> für 2/x als stammfunktion dann 2*ln(x) bekomme und e für
> x einsetze, kommt doch das gleiche ergebnis heraus, wie bei
> meiner rechnung!? oder?

Nein, ich erhalte als Ergebnis [mm] $2e^2$ [/mm]

Gruß

schachuzipus


Bezug
                                
Bezug
integral mit e: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:53 Fr 16.04.2010
Autor: isabel-f

stimmt. ln1 gibt ja null...vielen dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de