www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - integration
integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integration: eine aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:11 Di 04.09.2007
Autor: DerHochpunkt

Aufgabe
[mm] \integral_{}^{}{\bruch{4x}{(x - 2 )^2} dx} [/mm]  

Ich bekomme diese Aufgabe leider nicht gelöst. Vom Ansatz her müsste man x - 2 mit u substituieren, allerdings komme ich mit dem x im Zähler durcheinander.

Aufklärung würde mir sehr weiterhelfen. Vielen Dank schon mal für eure Mühe.

        
Bezug
integration: Tipp
Status: (Antwort) fertig Status 
Datum: 22:17 Di 04.09.2007
Autor: Loddar

Hallo DerHochpunkt!


Wenn du hier $z \ := \ x-2$ substituierst, solltest Du bedenken, dass auch gilt: $x \ = \  z+2$ .

Das kannst Du dann im Zähler einsetzen ...


Gruß
Loddar


Bezug
                
Bezug
integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:04 Di 04.09.2007
Autor: DerHochpunkt

alles klar. danke dir. bin jetzt genau auf die lösung gekommen, die im lösungsteil steht.

= 4 ln(x-2) - 8(x-2)^-1 +c

müsste stimmen.

Bezug
                        
Bezug
integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:57 Mi 05.09.2007
Autor: Winnifred

sicher das die Lösung stimmt?

ich komme auf

[mm] -\bruch{4x}{x-2}*4*ln(x-2) [/mm]

u=x-2   u'=1=du/dx  => dx=du

x= u+2

beim Ableiten/Integreiren muss man darauf achten das u eine funktion von x ist

Bezug
                                
Bezug
integration: obige Lösung stimmt
Status: (Antwort) fertig Status 
Datum: 12:05 Mi 05.09.2007
Autor: Loddar

Hallo Winnifred!


Die obige Lösung ist richtig. Deine leider nicht. Leite Deine Funktion doch wieder ab: da müsste dann die Ausgangsfunktion heraus kommen.

[mm] $$\integral{\bruch{4x}{(x-2)^2} \ dx} [/mm] \ = \ [mm] \integral{\bruch{4*(z+2)}{z^2} \ dz} [/mm] \ = \ [mm] \integral{\bruch{4z+8}{z^2} \ dz} [/mm] \ = \ [mm] \integral{\bruch{4z}{z^2}+\bruch{8}{z^2} \ dz} [/mm] \ = \ [mm] \integral{4*z^{-1}+8*z^{-2} \ dz} [/mm] \ = \ [mm] 4*\ln|z|-8*z^{-1} [/mm] \ = \ [mm] 4*\ln|x-2|-\bruch{8}{x-2}+c$$ [/mm]

Gruß
Loddar


Bezug
                        
Bezug
integration: ich erzähl quatsch
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:04 Mi 05.09.2007
Autor: Winnifred

sorry, hab jetzt selber einen fehler eingebaut.... müsste doch richtig sein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de