www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - integration lnx/x
integration lnx/x < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integration lnx/x: partielle integr. verwenden
Status: (Frage) beantwortet Status 
Datum: 21:54 Mo 07.05.2007
Autor: Loewenzahn

Aufgabe
integrieren Sie folgende funktion

Gesucht ist [mm] \integral_{a}^{b}{\bruch{lnx}{x}dx} [/mm] </task>
Lösung liegt mir (dank derive) vor. aber wieso ist das so??
Angedachte Lsg.:
PArtielle Integration: v'(x)= [mm] \bruch{1}{x} [/mm] und u(x)=lnx
Dann lautet es so:
[mm] [lnx*lnx]-[b]\integral_{a}^{b}{\bruch{lnx}{x}dx}[/b] [/mm] .... das spielchen lässt sich doch beliebig weiterspielen, ohne auf nen grünen zweig zu kommen, oder??

wenn ich v'(x)=lnx und u(x)= [mm] \bruch{1}{x} [/mm] setze, dann bekomme ich
(...) = -1+lnx - [mm] (\integral_{a}^{b}{\bruch{1}{x}dx} [/mm] - [mm] [b]\integral_{ \bruch{lnx}{x}dx})[/b] [/mm]  und bin wieder am anfang!


help...ich glaub schon ich werd blöde....wo ich doch sonst so eigentlich keine probs beim integr hab.,....
Löw N Zahn

        
Bezug
integration lnx/x: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Mo 07.05.2007
Autor: angela.h.b.

Hallo,

versuch's mal mit Substitution,

y=ln(x).

Gruß v. Angela

Bezug
        
Bezug
integration lnx/x: weiterkommen
Status: (Frage) beantwortet Status 
Datum: 07:23 Di 08.05.2007
Autor: Loewenzahn

Aufgabe
s.o.

ähm, und jetzt steh ich wohl wirklich auf dem schlauch.... dass ich substituieren könnte, auf die idee war ich auch gekommen, aber das bringt mir doch nur was, wenn ich dann entw die form [mm] \bruch{f'(x)}{f(x)} [/mm] oder die form f(x)=f(g(t))*(g'(t))  mit x= g(t) habe, oder??
denn hier habe ich doch dann (wenn y=lnx) bloß die form y*y' ....
und dann?!


Bezug
                
Bezug
integration lnx/x: Antwort
Status: (Antwort) fertig Status 
Datum: 07:43 Di 08.05.2007
Autor: angela.h.b.


>  ähm, und jetzt steh ich wohl wirklich auf dem schlauch....
> dass ich substituieren könnte, auf die idee war ich auch
> gekommen, aber das bringt mir doch nur was, wenn ich dann
> entw die form [mm]\bruch{f'(x)}{f(x)}[/mm] oder die form
> f(x)=f(g(t))*(g'(t))  mit x= g(t) habe, oder??
>  denn hier habe ich doch dann (wenn y=lnx) bloß die form
> y*y' ....

Hopp,

mach's einfach mal, und wenn's nicht klappt, zeig, wie weit Du kommst.

y= lnx    [mm] x=e^y [/mm]
dx=...dy    (bei den Punkten kommst die Ableitung von x nach y hin, möglicherweise war das der Knackpunkt.)

Dann einsetzen, Grenzen anpassen.

Gruß v. Angela


Bezug
                
Bezug
integration lnx/x: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Do 17.05.2007
Autor: Donut87

Das Problem lässt sich durch partielle Integration lösen:

[mm] \integral{\bruch{lnx}{x} dx} [/mm]

u(x) = ln x        v(x) = ln x
u'(x)= [mm] \bruch{1}{x} [/mm]             v'(x) = [mm] \bruch{1}{x} [/mm]

[mm] \integral{\bruch{lnx}{x} dx} [/mm] = (ln x)² -
[mm] \integral{\bruch{lnx}{x} dx} [/mm]

<=> 2 * [mm] \integral{\bruch{lnx}{x} dx} [/mm] = (ln x)²
<=> [mm] \integral{\bruch{lnx}{x} dx} [/mm] = [mm] \bruch{(ln x)²}{2} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de