www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - integration lnx/x
integration lnx/x < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integration lnx/x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:56 Mo 23.02.2009
Autor: ljoker

hallo!
irgendwie scheitere ich noch an der integration von lnx/x. meine überlegungen bisher:
[mm] \integral_{a}^{b}{\bruch{lnx}{x}dx} [/mm] habe ich zunächst umgeformt in
[mm] \integral_{a}^{b}{lnx*\bruch{1}{x}dx}, [/mm] damit ich dann die produktregel anwenden kann.
dazu habe ich v´(x)= [mm] \bruch{1}{x}, [/mm] v(x)= lnx, u(x)= lnx und u´(x)= [mm] \bruch{1}{x} [/mm] gewählt.

das alles habe ich dann eingesetzt in
[mm] \integral_{a}^{b}{u*v(strich)dx} [/mm] = u*v - [mm] \integral_{a}^{b}{u(strich)*v dx} [/mm]
sodass ich das als ergebnis erhielt:

[mm] \integral_{a}^{b}{lnx*\bruch{1}{x}dx}= [/mm] lnx* [mm] \bruch{1}{x} [/mm] - [mm] \integral_{a}^{b}{\bruch{1}{x}*lnx dx} [/mm]

aber das hat mir ja dann im prinzip gar nichts gebracht. habe ich ein falsches verfahren gewählt oder muss ich die terme noch weiter umformen?
wäre froh wenn mir jemand weiterhelfen kann :)


        
Bezug
integration lnx/x: Antwort
Status: (Antwort) fertig Status 
Datum: 17:03 Mo 23.02.2009
Autor: fred97


> hallo!
>  irgendwie scheitere ich noch an der integration von lnx/x.
> meine überlegungen bisher:
>  [mm]\integral_{a}^{b}{\bruch{lnx}{x}dx}[/mm] habe ich zunächst
> umgeformt in
> [mm]\integral_{a}^{b}{lnx*\bruch{1}{x}dx},[/mm] damit ich dann die
> produktregel anwenden kann.
>  dazu habe ich v´(x)= [mm]\bruch{1}{x},[/mm] v(x)= lnx, u(x)= lnx
> und u´(x)= [mm]\bruch{1}{x}[/mm] gewählt.
>  
> das alles habe ich dann eingesetzt in
> [mm]\integral_{a}^{b}{u*v(strich)dx}[/mm] = u*v -
> [mm]\integral_{a}^{b}{u(strich)*v dx}[/mm]
>  sodass ich das als
> ergebnis erhielt:
>  
> [mm]\integral_{a}^{b}{lnx*\bruch{1}{x}dx}=[/mm] lnx* [mm]\bruch{1}{x}[/mm] -
> [mm]\integral_{a}^{b}{\bruch{1}{x}*lnx dx}[/mm]
>



Das stimmt nicht!

Richtig wäre:

[mm]\integral_{}^{}{lnx*\bruch{1}{x}dx}= [/mm][mm] (lnx)^2 [/mm] -[mm]\integral_{}^{}{\bruch{1}{x}*lnx dx}[/mm] ,

also

2 [mm] \integral_{}^{}{lnx*\bruch{1}{x}dx} [/mm] = [mm] (lnx)^2 [/mm]

FRED




> aber das hat mir ja dann im prinzip gar nichts gebracht.
> habe ich ein falsches verfahren gewählt oder muss ich die
> terme noch weiter umformen?
>  wäre froh wenn mir jemand weiterhelfen kann :)
>  


Bezug
                
Bezug
integration lnx/x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 Mo 23.02.2009
Autor: ljoker

aber was setze ich denn dann da für u(x), v(x) usw?

die umformung verstehe ich leider auch nicht. woher kommt die 2 vor dem integral. nach welchen regeln konntest du das so umformen?

Bezug
                        
Bezug
integration lnx/x: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Mo 23.02.2009
Autor: fred97


> aber was setze ich denn dann da für u(x), v(x) usw?
>

u und v hast Du schon richtig gewählt . Dann ist $uv = [mm] (lnx)^2$ [/mm]   !!!



> die umformung verstehe ich leider auch nicht. woher kommt
> die 2 vor dem integral. nach welchen regeln konntest du das
> so umformen?





$ [mm] \integral_{}^{}{lnx\cdot{}\bruch{1}{x}dx}= [/mm] $$ [mm] (lnx)^2 [/mm] $ -$ [mm] \integral_{}^{}{\bruch{1}{x}\cdot{}lnx dx} [/mm] $


Addiere  mal auf beiden Seten  $ [mm] \integral_{}^{}{\bruch{1}{x}\cdot{}lnx dx} [/mm] $



FRED

Bezug
                                
Bezug
integration lnx/x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Mo 23.02.2009
Autor: ljoker

achso ja stimmt, da war am anfang ein tippfehler von mir drin.

wenn ich den letzten schritt dann noch umforme und durch zwei dividiere erhalte ich die stammfunktion [mm] \bruch{(lnx)^{2}}{2}, [/mm] richtig?

das ist aber umständlich ;) eine leichtere lösung gibts nicht?

Bezug
                                        
Bezug
integration lnx/x: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Mo 23.02.2009
Autor: fred97


> achso ja stimmt, da war am anfang ein tippfehler von mir
> drin.
>  
> wenn ich den letzten schritt dann noch umforme und durch
> zwei dividiere erhalte ich die stammfunktion
> [mm]\bruch{(lnx)^{2}}{2},[/mm] richtig?

Ja


>  
> das ist aber umständlich ;) eine leichtere lösung gibts
> nicht?



Ich weiß nicht, was es da zu meckern gibt


FRED

Bezug
                                        
Bezug
integration lnx/x: siehe unten!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:35 Mo 23.02.2009
Autor: Loddar

Hallo ljoker!


> das ist aber umständlich ;) eine leichtere lösung gibts nicht?

Umständlich würde ich das nicht gerade bezeichnen. Aber es gibt eine Alternativlösung.


Gruß
Loddar



Bezug
        
Bezug
integration lnx/x: Alternative
Status: (Antwort) fertig Status 
Datum: 17:32 Mo 23.02.2009
Autor: Loddar

Hallo ljoker!


Du kannst auch alternativ mittels Substitution vorgehen.

Substituiere hier: $z \ := \ [mm] \ln(x)$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
integration lnx/x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:45 Mo 23.02.2009
Autor: ljoker

alles klar, danke euch. habt mir auf jedenfall geholfen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de