www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - integrierbarkeit fn->f
integrierbarkeit fn->f < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integrierbarkeit fn->f: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 Do 24.04.2008
Autor: bonczi

Aufgabe
Zeigen Sie folgenden Sachverhalt mit Hilfe des Lebesgueschen Integrabilitätskriteriums. Sind die funktionen [mm] f_{n}: [a,b]\to\IR, [/mm] n=1,2..., R-integrierbar und konvergiert [mm] f_{n}\to [/mm] f gleichmäßig, so ist auch f R-integrierbar.

Hallo Leute, wollte mal wissen, ob meine Überlegungen richtig sind. Bin dankbar für jede Korrektur!

Also nach dem Lebesgueschen Int-krit. muss ich ja beweisen, dass f beschränkt ist und endlich viele Unstetigkeitsstellen (bestenfalls stetig ist) hat.

f ist stetig, da [mm] f_{n}\to [/mm] f gleichmäßig konvergiert und eine gleichmäßig konvergente Folge von Funktionen eine stetige Grenzfunktion hat. f ist also die stetige Grenzfunktion.

und f ist beschränkt, da jede in einem kompakten Intervall (hier [a,b] ) stetige Funktion beschränkt ist. (Satz vom Maximum)

daraus folgt, dass auch f Riemann-integrierbar ist.



jetzt ist noch meine frage: ist das richtig? muss ich noch die rückrichtung des beweises zeigen oder hat der beweis eine genau-dann-wenn-beziehung?

        
Bezug
integrierbarkeit fn->f: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Do 24.04.2008
Autor: MathePower

Hallo bonczi,

> Zeigen Sie folgenden Sachverhalt mit Hilfe des
> Lebesgueschen Integrabilitätskriteriums. Sind die
> funktionen [mm]f_{n}: [a,b]\to\IR,[/mm] n=1,2..., R-integrierbar und
> konvergiert [mm]f_{n}\to[/mm] f gleichmäßig, so ist auch f
> R-integrierbar.
>  Hallo Leute, wollte mal wissen, ob meine Überlegungen
> richtig sind. Bin dankbar für jede Korrektur!
>  
> Also nach dem Lebesgueschen Int-krit. muss ich ja beweisen,
> dass f beschränkt ist und endlich viele
> Unstetigkeitsstellen (bestenfalls stetig ist) hat.
>  
> f ist stetig, da [mm]f_{n}\to[/mm] f gleichmäßig konvergiert und
> eine gleichmäßig konvergente Folge von Funktionen eine
> stetige Grenzfunktion hat. f ist also die stetige
> Grenzfunktion.
>  
> und f ist beschränkt, da jede in einem kompakten Intervall
> (hier [a,b] ) stetige Funktion beschränkt ist. (Satz vom
> Maximum)
>  
> daraus folgt, dass auch f Riemann-integrierbar ist.
>  
>
>
> jetzt ist noch meine frage: ist das richtig? muss ich noch
> die rückrichtung des beweises zeigen oder hat der beweis
> eine genau-dann-wenn-beziehung?

Dieselbe Frage hast Du hier schon mal gepostet.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de