www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - interpolationsoperator
interpolationsoperator < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

interpolationsoperator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:35 Mo 05.03.2007
Autor: spektrum

Aufgabe
A sei der Interpoaltionsoperator
[mm] A:C[a,b]\to [/mm] P mit
Ax:= [mm] \summe_{k=0}^{n} x(t_{k})L_{k}, [/mm] wobei die [mm] t_{k} [/mm] paarweise verschiedene stützstellen sind und  [mm] L_{k} [/mm] das k-te lagrangesche polynom ist.
[mm] (a=t_{0}<...
Es ist [mm] (Ax)(t_k) [/mm] = [mm] x(t_k) [/mm]

Dann ist sehr grob
[mm] \parallel [/mm] Ax [mm] \parallel_{\infty}\le n^{n+1} \parallel [/mm] x [mm] \parallel _{\infty} [/mm]

halli hallo!

mein problem dabei ist das [mm] L_{k}. [/mm] wie kann ich das in dieser abschätzung auf das [mm] n^{n+1} [/mm] abschätzen?

ich weiß, dass [mm] \parallel Ax(t_k) \parallel_{\infty} [/mm] = [mm] \parallel x(t_k) \parallel _{\infty} [/mm] ist. (aufgrund der angabe)

logisch ist ja nun, dass [mm] \parallel Ax(t_k) \parallel_{\infty} \le n^{n+1} \parallel [/mm] x [mm] \parallel _{\infty}. [/mm]

aber wieso kann ich das denn so machen? so einfach wirds ja nicht sein oder?

ich bin dankbar für jeden hinweis!

vielen dank!

lg spektrum

        
Bezug
interpolationsoperator: Antwort
Status: (Antwort) fertig Status 
Datum: 12:38 Do 08.03.2007
Autor: MatthiasKr

Hi spektrum,
> A sei der Interpoaltionsoperator
> [mm]A:C[a,b]\to[/mm] P mit
> Ax:= [mm]\summe_{k=0}^{n} x(t_{k})L_{k},[/mm] wobei die [mm]t_{k}[/mm]
> paarweise verschiedene stützstellen sind und  [mm]L_{k}[/mm] das
> k-te lagrangesche polynom ist.
>  [mm](a=t_{0}<...
>  
> Es ist [mm](Ax)(t_k)[/mm] = [mm]x(t_k)[/mm]
>  
> Dann ist sehr grob
>  [mm]\parallel[/mm] Ax [mm]\parallel_{\infty}\le n^{n+1} \parallel[/mm] x
> [mm]\parallel _{\infty}[/mm]


ich hätte ne idee, wenn die stützstellen gleichverteilt sind, ist das vorausgesetzt? Es geht ja im grunde darum, die supremumsnorm der Lagrange-polynome abzuschätzen.

es ist

[mm] $L_k(x)=\prod_{i\ne k} \frac{x-t_i}{t_k - t_i}$. [/mm]

Eigentlich ist der rest ziemlich straight forward. Für den betrag gilt

[mm] $|L_k(x)|=\left|\prod_{i\ne k} \frac{x-t_i}{t_k - t_i}\right|=\prod_{i\ne k} \frac{|x-t_i|}{|t_k - t_i|}$ [/mm]

Im fall von gleichverteilten [mm] $t_i$ [/mm] kann der nenner nach unten durch $(b-a)/n$ abgeschätzt werden, der zähler durch $(b-a)$ nach oben, also:

[mm] $|L_k(x)|\le \prod_{i\ne k} \frac{b-a}{(b-a)/n}=n^n$ [/mm]

setzt du das in deine summe ein und schätzt noch ein wenig ab, bist du am ziel!

VG
Matthias

PS: eigentlich braucht der beweis nicht unbedingt gleichverteilte stützstellen, aber es dürfen keine zwei stützstellen einen abstand kleiner als $(b-a)/n$ haben!

>  halli hallo!
>  
> mein problem dabei ist das [mm]L_{k}.[/mm] wie kann ich das in
> dieser abschätzung auf das [mm]n^{n+1}[/mm] abschätzen?
>  
> ich weiß, dass [mm]\parallel Ax(t_k) \parallel_{\infty}[/mm] =
> [mm]\parallel x(t_k) \parallel _{\infty}[/mm] ist. (aufgrund der
> angabe)
>  
> logisch ist ja nun, dass [mm]\parallel Ax(t_k) \parallel_{\infty} \le n^{n+1} \parallel[/mm]
> x [mm]\parallel _{\infty}.[/mm]
>  
> aber wieso kann ich das denn so machen? so einfach wirds ja
> nicht sein oder?
>  
> ich bin dankbar für jeden hinweis!
>  
> vielen dank!
>  
> lg spektrum


Bezug
                
Bezug
interpolationsoperator: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:44 Mi 28.03.2007
Autor: spektrum

hallo matthias!

danke für deine antwort!

hab mir in der zwischenzeit gedanken über deine idee gemacht, und bin ganz zufrieden damit.
vorausgesetzt ist die gleichverteilung der stützstellen zwar nicht, aber ich solls ja nur sehr grob abschätzen.

jetzt bin ich soweit, dass

[mm] \parallel [/mm] Ax [mm] \parallel_{\infty} \le max|\summe x(t_{k})n^{n+1}| [/mm]

aber das max der summe von x ist ja nicht die unendlich-norm...
denn das max der summe von x ist doch eigentlich größer als das max von x, oder?

wie komme ich denn jetzt hier wieder aufs richtige, oder ist das überhaupt falsch?
ich glaube ich stehe einfach auf der leitung!

vielen dank im voraus  für die hilfe!

lg spektrum



Bezug
                        
Bezug
interpolationsoperator: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Sa 28.04.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de