www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - invert. Matrix P Diagonalgesta
invert. Matrix P Diagonalgesta < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

invert. Matrix P Diagonalgesta: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:11 Do 22.08.2013
Autor: YuYu42

Aufgabe
Die Matrix [mm] \pmat{ 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 } [/mm] hat die Eigenwerte [mm] \lambda_{1} [/mm] = 1 und [mm] \lambda_{2} [/mm] = 2. Bestimmen Sie eine invertierbare Matrix P, so dass D:= [mm] P^{-1}AP [/mm] Diagonalgestalt hat und bestimmen Sie D.


Die Aufgabe ist an sich nicht schwer und den Lösungsweg kenne ich, aber an einer Stelle rätsel ich, warum es nicht auch anders sein kann.

Zuerst berechnet man die Eigenvektoren zu den Eigenwerten. Für [mm] \lambda_{1} [/mm] = 1 ist der zugehörige Eigenvektor [mm] v_{1} [/mm] = [mm] \vektor{2 \\ -1 \\ -1}. [/mm]
Für [mm] \lambda_{2} [/mm] ergibt sich die Matrix [mm] \pmat{ 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 }. [/mm] Ein möglicher Vektor wäre [mm] v_{2} [/mm] = [mm] \vektor{-1 \\ 0 \\ 1}. [/mm] Um P erstellen zu können fehlt noch ein weiterer Vektor. Nach vorgegebener Lösung kann dies der Vektor [mm] \vektor{0 \\ 1 \\ 0} [/mm] sein, da er zu [mm] \vektor{-1 \\ 0 \\ 1} [/mm] linear unabhängig ist.

Nun meine Frage: Warum kommt z.B. der Vektor [mm] \vektor{1 \\ 0 \\ 0} [/mm] als dritter Vektor nicht in Frage? Er ist ebenfalls linear unabhängig zu [mm] v_{2}, [/mm] P ist immer noch invertierbar und alle Vektoren von P sind linear unabhängig zueinander.
Jedoch ist das Ergebnis von [mm] P^{-1}AP [/mm] keine Diagonalmatrix. Dabei hat der Vektor die gleichen Voraussetzungen wie der Vektor aus der Lösung.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
invert. Matrix P Diagonalgesta: Antwort
Status: (Antwort) fertig Status 
Datum: 06:30 Do 22.08.2013
Autor: fred97


> Die Matrix [mm]\pmat{ 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 }[/mm]
> hat die Eigenwerte [mm]\lambda_{1}[/mm] = 1 und [mm]\lambda_{2}[/mm] = 2.
> Bestimmen Sie eine invertierbare Matrix P, so dass D:=
> [mm]P^{-1}AP[/mm] Diagonalgestalt hat und bestimmen Sie D.
>  
> Die Aufgabe ist an sich nicht schwer und den Lösungsweg
> kenne ich, aber an einer Stelle rätsel ich, warum es nicht
> auch anders sein kann.
>  
> Zuerst berechnet man die Eigenvektoren zu den Eigenwerten.
> Für [mm]\lambda_{1}[/mm] = 1 ist der zugehörige Eigenvektor [mm]v_{1}[/mm]
> = [mm]\vektor{2 \\ -1 \\ -1}.[/mm]
> Für [mm]\lambda_{2}[/mm] ergibt sich die Matrix [mm]\pmat{ 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 }.[/mm]
> Ein möglicher Vektor wäre [mm]v_{2}[/mm] = [mm]\vektor{-1 \\ 0 \\ 1}.[/mm]
> Um P erstellen zu können fehlt noch ein weiterer Vektor.
> Nach vorgegebener Lösung kann dies der Vektor [mm]\vektor{0 \\ 1 \\ 0}[/mm]
> sein, da er zu [mm]\vektor{-1 \\ 0 \\ 1}[/mm] linear unabhängig
> ist.
>  
> Nun meine Frage: Warum kommt z.B. der Vektor [mm]\vektor{1 \\ 0 \\ 0}[/mm]
> als dritter Vektor nicht in Frage?

Weil er kein Eigenvektor ist !

FRED


>  Er ist ebenfalls linear
> unabhängig zu [mm]v_{2},[/mm] P ist immer noch invertierbar und
> alle Vektoren von P sind linear unabhängig zueinander.
>  Jedoch ist das Ergebnis von [mm]P^{-1}AP[/mm] keine Diagonalmatrix.
> Dabei hat der Vektor die gleichen Voraussetzungen wie der
> Vektor aus der Lösung.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
invert. Matrix P Diagonalgesta: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 Do 22.08.2013
Autor: YuYu42

Achso! Ich dachte man dürfte einen von den Einheitsvektoren hinzufügen, egal welchen.

Da man aber aus der Matrix [mm] \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} [/mm] keinen weiteren Vektor bestimmen kann, außer den Nullvektor, der aber nie Eigenvektor sein darf, muss es noch eine andere Methode zum bestimmen des Eigenvektors geben.


Wenn ich richtig liege, dann berechnet man den zusätzlichen Eigenvektor wie folgt: (A - [mm] \lambda [/mm] E) = [mm] v_{2}, [/mm] wobei [mm] \lambda [/mm] = 2.
Man erhält die Matrix [mm] \pmat{ -2 & 0 & -2 & -1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 } [/mm] und auf (red.) Zeilenstufenform gebracht die Matirx [mm] \pmat{ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 }. [/mm] Aus der letzten Spalte kann man den fehlenden Eigenvektor einfach ablesen.
Ist das so korrekt?

Bezug
                        
Bezug
invert. Matrix P Diagonalgesta: Antwort
Status: (Antwort) fertig Status 
Datum: 17:06 Do 22.08.2013
Autor: fred97


> Achso! Ich dachte man dürfte einen von den
> Einheitsvektoren hinzufügen, egal welchen.
>  
> Da man aber aus der Matrix [mm]\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}[/mm]
> keinen weiteren Vektor bestimmen kann


Aber hallo, natürlich kan man das


Es ist [mm]\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}*\vektor{x_1 \\ x_2\\ x_3}=0[/mm]   [mm] \gdw [/mm]

   [mm] x_1= \quad -x_3 [/mm]
   [mm] x_2=x_2 [/mm]
   [mm] x_3= \quad x_3 [/mm]

Daraus ergeben sich 2 l.u. Eigenvektoren, z.B.:

[mm] \vektor{-1 \\ 0\\ 1} [/mm]  und  [mm] \vektor{0\\ 1\\ 0} [/mm]

FRED


> , außer den
> Nullvektor, der aber nie Eigenvektor sein darf, muss es
> noch eine andere Methode zum bestimmen des Eigenvektors
> geben.
>  
>
> Wenn ich richtig liege, dann berechnet man den
> zusätzlichen Eigenvektor wie folgt: (A - [mm]\lambda[/mm] E) =
> [mm]v_{2},[/mm] wobei [mm]\lambda[/mm] = 2.
>  Man erhält die Matrix [mm]\pmat{ -2 & 0 & -2 & -1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 }[/mm]
> und auf (red.) Zeilenstufenform gebracht die Matirx [mm]\pmat{ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 }.[/mm]
> Aus der letzten Spalte kann man den fehlenden Eigenvektor
> einfach ablesen.
>  Ist das so korrekt?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de