www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - irreduzible Faktorzerlegung
irreduzible Faktorzerlegung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

irreduzible Faktorzerlegung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:18 Sa 20.12.2008
Autor: jacques2303

Aufgabe
Zerlegen Sie in Q[X] das Polynom [mm] X^8-1 [/mm] in irreduzible Faktoren.

Hallo zusammen,

ich bin mir nicht sicher, ob die Lösung stimmt. Hoffe auf euer Feedback dazu: [mm] x^8-1=(x^4-1)*(x^4+1)=(x^2-1)*(x^2+1)*(x^4+1)=(x-1)*(x+1)*(x^2+1)*(x^4+1). [/mm]

Gruß

        
Bezug
irreduzible Faktorzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Sa 20.12.2008
Autor: reverend

Bis hierhin stimmts.
Kannst Du zeigen, dass [mm] (x^2+1) [/mm] und [mm] (x^4+1) [/mm] irreduzibel sind?

lg,
reverend

Bezug
                
Bezug
irreduzible Faktorzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 So 21.12.2008
Autor: jacques2303

Hallo,

nein, das ist mir nicht klar. Ist es nicht möglich, dieses Polynom über [mm] \IQ [/mm] noch weiter zu zerlegen? Theoretisch sollte die nur über [mm] \IC [/mm] machbar sein.

Gruß

Bezug
                        
Bezug
irreduzible Faktorzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:54 So 21.12.2008
Autor: reverend

Stimmt auch genau.
Nur muss es ja einen Weg geben, das zu zeigen. Es wäre ja sonst denkbar, dass Du einfach eine mögliche Zerlegung übersehen hast. Es ist zwar sehr einfach, aber Du musst trotzdem zeigen, dass [mm] (x^2+1) [/mm] und [mm] (x^4+1) [/mm] nicht weiter zerlegbar sind.

Bezug
                                
Bezug
irreduzible Faktorzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:14 So 21.12.2008
Autor: jacques2303

Hallo,

ja, wie genau soll ich das zeigen. Das ist mir an dieser Stelle nicht ganz klar.

Gruß

Bezug
                                        
Bezug
irreduzible Faktorzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 So 21.12.2008
Autor: schachuzipus

Hallo Jacques,

> Hallo,
>  
> ja, wie genau soll ich das zeigen. Das ist mir an dieser
> Stelle nicht ganz klar.

Polynome vom Grad 2 oder 3 sind irreduzibel über einem Körper genau dann, wenn sie keine NST(en) in dem Körper haben, damit lässt sich das erste [mm] $x^2+1$ [/mm] doch schnell erschlagen.

Beim zweiten [mm] $x^4+1$ [/mm] substituiere [mm] $\tilde{x}=x+1$, [/mm] dann mit Eisenstein ran

>  
> Gruß


LG

schachuzipus

Bezug
                                                
Bezug
irreduzible Faktorzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:50 So 21.12.2008
Autor: jacques2303

Hallo,

ok, aber Eisenstein wurde bisher in der Vorlesung noch nicht behandelt. Gibt es da auch eine andere Möglichkeit, dies zu zeigen?

Gruß

Bezug
                                                        
Bezug
irreduzible Faktorzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:53 So 21.12.2008
Autor: schachuzipus

Hallo nochmal,

> Hallo,
>  
> ok, aber Eisenstein wurde bisher in der Vorlesung noch
> nicht behandelt.

Schade ;-)

> Gibt es da auch eine andere Möglichkeit,
> dies zu zeigen?

Jo, versuche den Weg "zu Fuß", bastel dir eine Zerlegung [mm] $(x^4+1)=(x^2+ax+b)(x^2+cx+d)$ [/mm]

Den Kram ausmultiplizieren, nach Potenzen von x ordnen und einen Koeffizientenvgl. machen.

Es sollte keine Lösung für [mm] $a,b,c,d\in\IQ$ [/mm] geben ...

>  
> Gruß


LG

schachuzipus

Bezug
                                                                
Bezug
irreduzible Faktorzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:24 So 21.12.2008
Autor: jacques2303

Ok, stimmt, man erhält einen schönen Widerspruch. Vielen Dank für den Tipp. ;-)

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de