www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - irreduzible Polynome
irreduzible Polynome < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

irreduzible Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Mi 11.01.2006
Autor: dauwer

Aufgabe
Bestimmen Sie alle irreduziblen Polynome $f(X) [mm] \in \IF_{2}[X]~mit~Grad~f(X) \le [/mm] 4$ .

Ich habe diese Aufgabe zu lösen und habe leider nicht ein mal einen Ansatz gefunden um sie zu lösen. Ich hoffe ihr könnt mir bei der Lösung helfen.

Danke,

dauwer

        
Bezug
irreduzible Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Mi 11.01.2006
Autor: Leopold_Gast

1. Alle Polynome vom Grad 1 sind irreduzibel.

2. Wenn ein quadratisches Polynom reduzibel ist, muß es in zwei Linearfaktoren zerfallen und damit Nullstellen besitzen. Die irreduziblen quadratischen Polynome sind also diejenigen ohne Nullstellen.

3. Ein reduzibles kubisches Polynom muß aus Gradgründen mindestens einen Linearfaktor abspalten. Irreduzibel sind also diejenigen kubischen Polynome, die keine Nullstellen besitzen.

4. Wenn ein Polynom vom Grad 4 eine Nullstelle besitzt, so ist es reduzibel. Besitzt es keine Nullstellen, so könnte es noch in zwei irreduzible quadratische Polynome zerfallen. Die wurden aber schon in 2. bestimmt. Wenn einem nichts Besseres einfällt, könnte man die Polynomdivision durch jedes dieser irreduziblen quadratischen Polynome durchführen und schauen, ob sie aufgeht. Falls sie niemals aufgeht, ist das Polynom vom Grad 4 irreduzibel.

Fangen wir einmal an. Es gibt 4 quadratische Polynome

[mm]X^2, \ X^2+1, \ X^2 + X, \ X^2 + X + 1[/mm]

Als Beispiel nehmen wir [mm]X^2 + 1[/mm]. Wegen [mm]1^2 + 1 = 0[/mm] besitzt es eine Nullstelle, ist also reduzibel.

Und jetzt bist du dran ...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de