www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - irreduzibles Polynom
irreduzibles Polynom < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

irreduzibles Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:50 Fr 10.02.2012
Autor: Physy

Aufgabe
Zeige, dass [mm] f=x^6+x^5+x^4+x^3+x^2+x+1 [/mm] irreduzibel in [mm] \IQ[X] [/mm] ist.

Ich habe den Hinweis: Betrache f(X+1) und kenne nur das Einsteinkriterium. Warum es mir was bringen sollte, wenn ich f(x+1) betrachte weiß ich nicht...


        
Bezug
irreduzibles Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 Fr 10.02.2012
Autor: Fulla

Hallo Physy,

> Zeige, dass [mm]f=x^6+x^5+x^4+x^3+x^2+x+1[/mm] irreduzibel in [mm]\IQ[X][/mm]
> ist.
>  Ich habe den Hinweis: Betrache f(X+1) und kenne nur das
> Einsteinkriterium. Warum es mir was bringen sollte, wenn
> ich f(x+1) betrachte weiß ich nicht...

Du meinst das Eisensteinkriterium.

Na, dann berechne doch mal $f(x+1)$! Wie du feststellen wirst, kann dann Eisenstein verwenden.


Lieben Gruß,
Fulla


Bezug
                
Bezug
irreduzibles Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Fr 10.02.2012
Autor: Physy

Hallo und danke für die schnelle Antwort.

Das weiß ich aber warum kann ich das Eisensteinkriterium dann immer noch anwenden?

Bezug
                        
Bezug
irreduzibles Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Fr 10.02.2012
Autor: felixf

Moin!

> Hallo und danke für die schnelle Antwort.
>  
> Das weiß ich aber warum kann ich das Eisensteinkriterium
> dann immer noch anwenden?

1. Was kommt denn bei dir raus?

2. Weisst du, was das Eisensteinkriterium besagt?

Du musst schon etwas tun, damit wir dir helfen koennen, ohne dir gleich eine Loesung zur Aufgabe zu diktieren.

LG Felix



Bezug
                                
Bezug
irreduzibles Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Fr 10.02.2012
Autor: Physy

Das Ergebnis ist [mm] x^6 [/mm] + [mm] 7x^5 [/mm] + [mm] 21x^4 [/mm] + [mm] 35x^3 [/mm] + [mm] 35x^2 [/mm] + 21x + 7 und das ist irreduzibel mit der Primzahl 7 gemäß dem Eisensteinkriterium. Aber wieso darf ich denn auch f(X+1) betrachten?

Bezug
                                        
Bezug
irreduzibles Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 20:42 Fr 10.02.2012
Autor: Fulla

Hallo Physy,

> Das Ergebnis ist [mm]x^6[/mm] + [mm]7x^5[/mm] + [mm]21x^4[/mm] + [mm]35x^3[/mm] + [mm]35x^2[/mm] + 21x +
> 7 und das ist irreduzibel mit der Primzahl 7 gemäß dem
> Eisensteinkriterium.

Das stimmt. Aber damit hast du erstmal nur die Irreduzibilität über [mm]\mathbb Z[X][/mm] gezeigt (zumindest kenne ich das Eisensteinkriterium so)...

> Aber wieso darf ich denn auch f(X+1)
> betrachten?

Angenommen du hast ein reduzibles Polynom [mm]p(X)=g(X)*h(X)[/mm]. Dann gilt doch auch [mm]p(X+1)=g(X+1)*h(X+1)[/mm], bzw. [mm]p(X-1)=g(X-1)*h(X-1)[/mm].

In deiner Aufgabe betrachten wir [mm]f(X)=X^6+X^5+X^4+X^3+X^2+1[/mm]. Angenommen es gäbe [mm]g,h[/mm] mit [mm]f(X)=g(X)*h(X)[/mm], dann folgt daraus [mm]f(X+1)=g(X+1)*h(X+1)[/mm], aber mit Eisenstein hast du gezeigt, dass [mm]f(X+1)[/mm] irreduzibel ist - und damit ist auch [mm]f(X)[/mm] irreduzibel.

Das ist ein beliebter Trick um Irreduzibilität zu zeigen. Du hättest auch [mm]f(X-1)[/mm] oder [mm]f(X+17)[/mm] betrachten können (ob Eisenstein da funktioniert, weiß ich nicht), aber du musst dabei sicherstellen, dass das Polynom in [mm]\mathbb Z [X][/mm] bleibt. [mm]f(X+\frac{1}{3})[/mm] wäre z.B. eine schlechte Wahl.

Lieben Gruß,
Fulla




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de