www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - isomorphe Gruppen
isomorphe Gruppen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

isomorphe Gruppen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:59 So 11.07.2004
Autor: margarita

Hallo...
Ich habe noch eine Frage zu folgendem Thema:
Wir definieren[mm] A_n:= \left\{\begin{bmatrix} 1 & 0 &\cdots & 0 \\ a_1 \\ \vdots & S & \\ a_n \\ \end{bmatrix} | \in M[sub]n+1,n+1[/sub](\IR) |S \in GL_n(\IR)\right\}[/mm]

Ich wollte zeigen, dass die Gruppe der affinen Abbildungen [mm] A(\IR^n) [/mm] isomorph ist zu [mm] A_n. [/mm]
Eine affine Abbildung soll so definiert sein: Eine bijektive Abbildung
g: [mm] \IR^n \to \IR^n [/mm] heisst affin, wenn fuer alle x, y [mm] \in \IR^n [/mm] und alle a, b
[mm] \in \IR [/mm] mit a+b=1 gilt: g(ax+bx)=ag(x)+bg(y).

Ich weiss, dass ich einen Isomorphismus finden muss, d.h eine Abbildung [mm] \psi [/mm] : [mm] A(\IR^n) \to A_n, [/mm] die bijektiv ist, und fuer die gilt
[mm] \psi [/mm] (g *A[\IR^n] g' )= [mm] \psi(g) [/mm] *A_n [mm] \psi(g'). [/mm]
Aber leider komme ich da etwas durcheinander. Wie sieht so ein Isomorphismus aus und wie zeigt man dann die zwei Eigenschaften?

Waere sehr dankbar fuer jede Hilfe....
Margarita

        
Bezug
isomorphe Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 So 11.07.2004
Autor: Gnometech

Hallo nochmal!

Ok, hierzu gebe ich etwas Hilfestellung... die Hauptarbeit überlasse ich Dir. :-)

Zunächst mal Folgendes: angenommen wir haben eine affine Abbildung [mm]g [/mm] mit der zusätzlichen Eigenschaft: [mm] g(0) = 0[/mm].

Dann folgt doch:

[mm]g(ax) = g(ax + b0) = ag(x) + b(g(0) = ag(x)[/mm]

Und zwar für alle reellen Zahlen [mm] a[/mm], da ich für jede solche ein [mm]b \in \IR [/mm] finden kann mit [mm] a + b = 1[/mm].

Außerdem gilt doch:

[mm]g(x + y) = g(\frac{1}{2}(2x) + \frac{1}{2}(2y)) = \frac{1}{2}g(2x) + \frac{1}{2}g(2y) = g(x) + g(y) [/mm]

Nach dem, was wir oben gesehen haben. Mit anderen Worten: [mm] g \in GL_n[/mm], ist also eine lineare Abbildung. Zu dieser gehört eine Matrix [mm]S [/mm]. Wähle in diesem Fall einfach [mm] a_1 = \ldots = a_n = 0[/mm] und schon hast Du eine Abbildung für spezielle [mm] g[/mm].

Nun überlegt man sich folgendes: falls allgemein [mm] g(0) = z [/mm], dann definiere:

[mm] h(x) := g(x) - z[/mm]

Jetzt kann man nachweisen, dass [mm] h[/mm] affin ist (hier geht wichtig ein, dass [mm] a+b = 1[/mm]!!) und kann also ein solches [mm] g[/mm] abbilden auf die Matrix, die den Vektor [mm] z[/mm] in der ersten Spalte stehen hat (mit führender 1) und die Untermatrix ist die zu [mm]h [/mm].

Damit wäre die Abbildung konstruiert. Deine Aufgabe ist es nun zu zeigen, dass diese sich mit der Gruppenabbildung verträgt (wie sieht das Produkt von 2 solchen Matrizen aus? Zeige: es addieren sich die Vektoren links und die Untermatrizen mulitplizieren sich) und dass die Daten in der Matrix die Abbildung eindeutig bestimmen (Bijektivität). Dazu ist es zweckmäßig, wenn Du zwei affine Abbildungen verknüpfen willst, sie in der Form wie oben zu schreiben: eine lineare Abbildung und einen sogenannten "Translationsanteil" (Translation = Verschiebung um einen Vektór, in diesem Fall Addition eines Vektors).

So, der Rest liegt bei Dir! Sollte es Dir wider Erwarten nicht gelingen, das zu zeigen was Du willst, melde Dich nochmal.

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de