www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - k-te Wurzel, Beweis
k-te Wurzel, Beweis < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

k-te Wurzel, Beweis: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:21 Sa 17.01.2015
Autor: sissile

Aufgabe
Sei [mm] k\ge2 [/mm] eine natürliche Zahl und a>0 eine positive reelle Zahl. Dann konvergiert für jeden Anfangswert [mm] x_0>0 [/mm] die durch
[mm] x_{n+1} :=\frac{1}{k} ((k-1)x_n+\frac{a}{x_n^{k-1}}) [/mm]
rekursiv definierte Folge [mm] (x_n)_{n\in\IN} [/mm] gegen die eindeutig bestimmte positive Lösung der Gleichung [mm] x^k=a. [/mm]


Hallo,
Der Beweis wird im Forster Analysis 1(S.58) geführt.
Ich verstehe den Beweis zu der Konvergenz nicht.
Die Rekursionsformel wird zunächst umgeformt:
[mm] x_{n+1}=\frac{1}{k}x_n((k-1)+\frac{a}{x_n^{k}})=x_n(1+\frac{1}{k}(\frac{a}{x_n^k}-1)) [/mm]
Aus der Bernoullischen Ungleichung wird gefolgert
[mm] (1+\frac{1}{k}(\frac{a}{x_n^k}-1))^k \ge [/mm] 1+ [mm] (\frac{a}{x_n^k} [/mm] -1)= [mm] \frac{a}{x_n^k}, [/mm]
[mm] \Rightarrow x_{n+1}^k \ge [/mm] a.

Frage 1 Wie kommt man dann zur anschließenden Folgerung [mm] \frac{a}{x_n^k} \le [/mm] 1 für alle n [mm] \ge [/mm] 1?

Aus [mm] \frac{a}{x_n^k} \le [/mm] 1 für alle n [mm] \ge [/mm] 1 wird gefolgert [mm] \frac{1}{k}(\frac{a}{x_n^k}-1)\le0 [/mm]
Und damit ist klar [mm] x_{n+1} \le x_n [/mm] für [mm] n\ge1. [/mm] D.h. die Folge [mm] (x_n)_{n\ge1} [/mm] ist monoton fallend und durch 0 nach unten beschränkt [mm] \Rightarrow [/mm] Konvergenz


Frage 2 : Das beschriebene Verfahren ist ja ein Spezialfall des Newton-Verfahrens für die Funktion [mm] f:\IR_+ \to \IR, f(x):=x^k [/mm] -a
Hier wird aber im Beweis für die Konvergenz des Newton-Vefahrens verlangt, dass [mm] f(x_0)\ge0, [/mm] d.h. [mm] x_0^k [/mm] -a [mm] \ge [/mm] 0 [mm] \iff x_0 \ge [/mm] a.
Also bietet das NewtonVerfahren keine Aussage wenn [mm] x_0^k [/mm] < a ist oder?

LG,
sissi

        
Bezug
k-te Wurzel, Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 Sa 17.01.2015
Autor: Al-Chwarizmi


> Sei [mm]k\ge2[/mm] eine natürliche Zahl und a>0 eine positive
> reelle Zahl. Dann konvergiert für jeden Anfangswert [mm]x_0>0[/mm]
> die durch
>  [mm]x_{n+1} :=\frac{1}{k} ((k-1)x_n+\frac{a}{x_n^{k-1}})[/mm]
>  
> rekursiv definierte Folge [mm](x_n)_{n\in\IN}[/mm] gegen die
> eindeutig betsimmte Lösung der Gleichung [mm]x^k=a.[/mm]


Hallo sissi,

ich will gar nicht auf deine Fragen eingehen, da mir im
Moment die Zeit dazu fehlt.

Ich möchte nur darauf hinweisen, dass in der (oben zitierten)
Aufgabenstellung etwas nicht stimmt.

Wenn nämlich k eine natürliche Zahl mit [mm]k\ge2[/mm] und a eine positive
reelle Zahl ist, so stimmt es im Allgemeinen nicht, dass  
die Gleichung  $\ [mm] x^k\ [/mm] =\ a$  eine eindeutig bestimmte reelle Lösung hat !

LG  ,   Al-Chw.

Bezug
                
Bezug
k-te Wurzel, Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:26 Sa 17.01.2015
Autor: sissile


> > Sei [mm]k\ge2[/mm] eine natürliche Zahl und a>0 eine positive
> > reelle Zahl. Dann konvergiert für jeden Anfangswert [mm]x_0>0[/mm]
> > die durch
>  >  [mm]x_{n+1} :=\frac{1}{k} ((k-1)x_n+\frac{a}{x_n^{k-1}})[/mm]
>  >

>  
> > rekursiv definierte Folge [mm](x_n)_{n\in\IN}[/mm] gegen die
> > eindeutig betsimmte Lösung der Gleichung [mm]x^k=a.[/mm]
>  
>
> Hallo sissi,
>  
> ich will gar nicht auf deine Fragen eingehen, da mir im
>  Moment die Zeit dazu fehlt.
>  
> Ich möchte nur darauf hinweisen, dass in der (oben
> zitierten)
>  Aufgabenstellung etwas nicht stimmt.
>  
> Wenn nämlich k eine natürliche Zahl mit [mm]k\ge2[/mm] und a eine
> positive
> reelle Zahl ist, so stimmt es im Allgemeinen nicht, dass  
> die Gleichung  [mm]\ x^k\ =\ a[/mm]  eine eindeutig bestimmte reelle
> Lösung hat !
>  
> LG  ,   Al-Chw.


Danke, dass du mich auf den Fehler aufmerksam machst.
Natürlich eine eindeutig bestimmte positive Lösung. Ich ändere es mal eben!

LG,
sissi

Bezug
        
Bezug
k-te Wurzel, Beweis: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mo 19.01.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de