www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - kUgel Ebene
kUgel Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kUgel Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:20 Do 22.10.2009
Autor: alex12456

Aufgabe
Die Ebene T durch A(4/41/-6) ,B(0/16/6) und C(0/0/14) berührt eine KUgel K um M(1/2/3)
a) Berechne den Kugelradius und den Berührpunkt
b)Stelle eine Gleichung der Ebene E auf die durch A und B geht und die Kugel halbiert
c) Stelle eine Gleichung der Ebene T2 auf, die durch A und B geht und die Kugel ebenfalls berührt.

zu a)
ich hab  erstmal E aufgestellt in Normalenform E: [mm] \vec{x}=(\vec{x}- \vektor{4\\41\\-6}) *\vektor{-8\\32\\64} [/mm]
so un habe ich eine Gerade g aufgestellt mit OM als stützvektor und  [mm] \vec{n} [/mm] der Ebene als Richtungsvektor
g: [mm] \vec{x}=\vektor{1\\2\\3}+ \alpha *\vektor{-8\\32\\64} [/mm]
nun g in E eingesetzt bekomme ich für [mm] \alpha [/mm] =1/8  dies in g eingesetzt bekomme ich B = (-1/8/24)
und der die Länge des Vrbindungsvektors  [mm] \vec{MB} [/mm] müsste eigendlich den Radius ergeben...ich bekomme raus 21,9 ist das richtig??
[mm] |\vektor{-1-1\\8-2\\24-3}|= [/mm] 21.9

und für b) muss ich ja eigendlich nur  [mm] \vec{m} [/mm] als stützvektor wählen und den normalen vektor aus  [mm] \vec{ma} [/mm] und  [mm] \vec{mb} [/mm]
also E: [mm] \vec{x}= (x-\vektor{1\\2\\3})*\vec{n} [/mm]
und [mm] \vec{n}= \vektor{243\\0\\81} [/mm] wenn man das vektorprodukt verwendet habe ich recht??
danke für antworten


        
Bezug
kUgel Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Do 22.10.2009
Autor: weduwe


> Die Ebene T durch A(4/41/-6) ,B(0/16/6) und C(0/0/14)
> berührt eine KUgel K um M(1/2/3)
>  a) Berechne den Kugelradius und den Berührpunkt
>  b)Stelle eine Gleichung der Ebene E auf die durch A und B
> geht und die Kugel halbiert
>  c) Stelle eine Gleichung der Ebene T2 auf, die durch A und
> B geht und die Kugel ebenfalls berührt.
>  zu a)
>   ich hab  erstmal E aufgestellt in Normalenform E:
> [mm]\vec{x}=(\vec{x}- \vektor{4\\41\\-6}) *\vektor{-8\\32\\64}[/mm]
>  
>  so un habe ich eine Gerade g aufgestellt mit OM als
> stützvektor und  [mm]\vec{n}[/mm] der Ebene als Richtungsvektor
>  g: [mm]\vec{x}=\vektor{1\\2\\3}+ \alpha *\vektor{-8\\32\\64}[/mm]
>  
> nun g in E eingesetzt bekomme ich für [mm]\alpha[/mm] =1/8  dies in
> g eingesetzt bekomme ich B = (-1/8/24)
>  und der die Länge des Vrbindungsvektors  [mm]\vec{MB}[/mm] müsste
> eigendlich den Radius ergeben...ich bekomme raus 21,9 ist
> das richtig??
> [mm]|\vektor{-1-1\\8-2\\24-3}|=[/mm] 21.9
>  
> und für b) muss ich ja eigendlich nur  [mm]\vec{m}[/mm] als
> stützvektor wählen und den normalen vektor aus  [mm]\vec{ma}[/mm]
> und  [mm]\vec{mb}[/mm]
>  also E: [mm]\vec{x}= (x-\vektor{1\\2\\3})*\vec{n}[/mm]
>  und
> [mm]\vec{n}= \vektor{243\\0\\81}[/mm] wenn man das vektorprodukt
> verwendet habe ich recht??
>  danke für antworten
>  

die ebene stimmt, einfacher wird es, wenn du ein bißerl kürzt:

[mm]E: -x+4y+8z = 112[/mm]

den radius bestimmst du am einfachsten mit der HNF

[mm]r=|\frac{-1+8+24-112}{9}|=9[/mm]

b) ist richtig, auch hier hilft kürzen :-)

[mm] \vec{n}=\vektor{3\\0\\1} [/mm]



Bezug
                
Bezug
kUgel Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Fr 23.10.2009
Autor: alex12456

Aufgabe
danke und wie berechne ich aufgabenteil c?
ich habe folgendes gemacht:
ich habe erstmal eine gerade mit A und B aufgestellt
und diese in eine Ebene eingesetzt mit M und dem Richtungsvektor von der geraden MIT A und B um den Parameter a zu bestimmen und diesen in die Gerade eingesetzt um den Schnittpunkt von g und E also den Berührpiunkt zu bestimmen richtig gedacht?

g: [mm] \vektor{4 \\ 41\\-6}+a* \vektor{-4 \\ -25\\12} [/mm]  der richtungsvektor ist ja der Verbindungsvektor vonAB. und das [mm] ist\vektor{-4 \\ -25\\12} [/mm]
so und E : [mm] 0=(\vec{x}- \vektor{1\\ 2\\3})* \vektor{-4 \\ -25\\12} [/mm]  
nun setze ich g in E ein und bekomme für a =1.395 hmm das ergebnis scheint mir nicht richtig zu sein....oder doch? setze ich nun a in g bekomme ich ür den Berührpunkt : B(-1,58/6.125/-10,74) kann das stimmen?

Bezug
                        
Bezug
kUgel Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Fr 23.10.2009
Autor: weduwe

mir ist nicht recht klar was du da wozu machst.

die gleichung der tangentialebene im punkt B an die kugel K(M,r) lautet:

[mm] (\vec{x}-\vec{m})\cdot(\vec{b}-\vec{m})=r^2 [/mm]

mit [mm] \vec{b}-\vec{m}=\vec{r} [/mm] und damit [mm] \vec{r}^2=r^2 [/mm]
hast du 3 gleichungen für die 3 komponenten des vektors [mm] \vec{r}, [/mm] woraus du dann die koordinaten des/der berührpunkte/s  berechnen kannst

[mm] B_1(0/6/11) [/mm] und [mm] B_2(-3/6/10) [/mm] bekomme ich

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de