www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - kanonischer Isomorphismus
kanonischer Isomorphismus < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kanonischer Isomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 Mo 19.10.2009
Autor: moerni

Hallo,
ich arbeite gerade die Homomorphiesätze durch, weiß allerdings nicht was ein "kanonischer Isomorphismus" genau bedeutet und habe leider keine Definition gefunden. Kann mir jemand helfen?
grüße, moerni

        
Bezug
kanonischer Isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Mo 19.10.2009
Autor: pelzig

Ein kanonischer Isomorphismus ist mathematisch nichts weiter als ein Isomorphismus.

Das Wort kanonisch ist eines der wenigen Wörter die in der Mathematik zwar ständig benutzt werden, aber keine streng definierte Bedeutung haben. Ich würde es so umschreiben: etwas ist kanonisch, wenn es auf besonders einfache/naheliegende Weise definiert ist, man insbesondere keine weiteren Wahlen (wie z.B. die Wahl einer Basis in einem Vektorraum) machen muss.

Wenn wir zum Beispiel einen endlich-dimensionalen reellen Vektorraum V haben, dann sagt man meist:
1) Es gibt keinen kanonischen Isomorphismus von $V$ nach [mm] $\IR^n$, [/mm] denn ein solcher würde die Wahl einer ausgezeichneten Basis in $V$ verlangen, was irgendwie willkürlich ist.
2) Ist V dagegen von Haus aus mit irgendeiner Basis [mm] $v_1,....,v_n$ [/mm] ausgestattet, dann ist V kanonisch isomorph zum [mm] $\IR^n$ [/mm] durch den Isomorphismus [mm] $$\Phi:V\ni\sum_{i=1}^n\lambda_iv_i\mapsto(\lambda_1,...,\lambda_n)\in\IR^n$$ [/mm]
3) Zu jeder Basis [mm] v_1,...,v_n [/mm] hat man die kanonische Basis [mm] v_1^\star,...,v_n^\star$ [/mm] im Dualraum [mm] $V^\star$ [/mm] definiert durch die Eigenschaft [mm] $v_i^\star(v_j)=\delta_{ij}$. [/mm]

Du siehst, was nun kanonisch ist und was nicht, ist letztlich irgendwie auch Geschmackssache. Mit der Zeit kriegst du halt ein Gefühl dafür.

Gruß, Robert

Bezug
                
Bezug
kanonischer Isomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:45 Mo 19.10.2009
Autor: moerni

vielen Dank für die rasche Antwort!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de