www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - kein ggT=>kein euklidischer R
kein ggT=>kein euklidischer R < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kein ggT=>kein euklidischer R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:54 So 11.01.2015
Autor: MeineKekse

Hi, bei Wikipedia steht
All diesen Definitionsvarianten ist jedoch gemeinsam, dass in einem euklidischen Ring eine Division mit Rest und damit ein euklidischer Algorithmus zur Bestimmung des größten gemeinsamen Teilers (ggT) zweier Ringelemente möglich ist. Von dieser Eigenschaft ist der Name abgeleitet.


Als Beispiel wird genannt

Der Ring [mm] \IZ[\sqrt{-3}] [/mm] ist nicht euklidisch, da [mm] 2+2\sqrt{-3} [/mm] und 4 keinen ggT haben (zwei „maximale gemeinsame Teiler“ sind [mm] 1+\sqrt{-3} [/mm] und 2, die aber teilerfremd sind).


soweit so gut. Heißt, wenn zwei Elemente in einem Ring R keinen ggt haben geht der euklidische Algorithmus irgendwo schief und somit, kann R kein euklidischer Ring sein.

Meine Frage wo genau geht denn was schief beim euklidischen Algorithmus?

        
Bezug
kein ggT=>kein euklidischer R: Antwort
Status: (Antwort) fertig Status 
Datum: 02:06 Mo 12.01.2015
Autor: Schadowmaster


> Hi, bei Wikipedia steht
>  All diesen Definitionsvarianten ist jedoch gemeinsam, dass
> in einem euklidischen Ring eine Division mit Rest und damit
> ein euklidischer Algorithmus zur Bestimmung des größten
> gemeinsamen Teilers (ggT) zweier Ringelemente möglich ist.
> Von dieser Eigenschaft ist der Name abgeleitet.
>  
> Als Beispiel wird genannt
>  
> Der Ring [mm]\IZ[\sqrt{-3}][/mm] ist nicht euklidisch, da
> [mm]2+2\sqrt{-3}[/mm] und 4 keinen ggT haben (zwei „maximale
> gemeinsame Teiler“ sind [mm]1+\sqrt{-3}[/mm] und 2, die aber
> teilerfremd sind).
>  
> soweit so gut. Heißt, wenn zwei Elemente in einem Ring R
> keinen ggt haben geht der euklidische Algorithmus irgendwo
> schief und somit, kann R kein euklidischer Ring sein.
>  
> Meine Frage wo genau geht denn was schief beim euklidischen
> Algorithmus?

Guck dir mal im Wikipediaartikel die erste Variante der Definition an. Hier steht im Endeffekt, dass Division mit Rest ganz klassisch wie im Euklidischen Algorithmus durchführbar ist. Ist das nicht gegeben, kannst du den Algorithmus halt nicht ausführen, da du keine Anhaltspunkte hast, wie das $q$ und das $r$ zu wählen sind, da du nicht weißt, ob nun $g(r) < g(y)$ oder nicht.

Also es geht nicht etwas schief, es geht überhaupt nichts, weil der Euklidische Algorithmus ohne eine ordentliche Division mit Rest (eben über so eine euklidische Funkion) gar nicht ordentlich definiert ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de