www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - kollineation transformation
kollineation transformation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kollineation transformation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:00 Mi 03.01.2007
Autor: klamao

Aufgabe
Bestimmen sie von den folgenden Abbildungen von [mm] R^2 [/mm] in [mm] R^2 [/mm] die Transformationen und die Kollineationen: alpha1((x,y))=(2x+1,y³),
                                         alpha2((x,y))=(x³-x,2y),
                                         alpha3((x,y))=(2x,x-3),
                                         alpha4((x,y))=(y+2,5x),
                                         alpha5((x,y))=(-x,-y),
                                         alpha6((x,y))=(x+y,x-y).
Geben sie für die Kollineationen die Gleichung der Bildgeraden an.

Hallo,
kann mir bitte jemand anhand eines Beispiels zeigen, wie man das macht?
Bei einer Transformation muss man ja die Abbildung auf Bijektivität untersuchen. Ich kenn das aber nur in der Form einer Gleichung.Hier ist es aber in Koordinatenschreibweise. Wie soll man das hier machen??
Bei den Kollineationen muss man irgendwie versuchen eine Gerade aufzustellen, aber wie?
Hoffe es gibt hier jemanden, der mehr Ahnung hat, als ich,
lg

        
Bezug
kollineation transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 12:08 Do 04.01.2007
Autor: zahlenspieler

Hallo klamao,
> Bestimmen sie von den folgenden Abbildungen von [mm]R^2[/mm] in [mm]R^2[/mm]
> die Transformationen und die Kollineationen:
> alpha1((x,y))=(2x+1,y³),
> alpha2((x,y))=(x³-x,2y),
> alpha3((x,y))=(2x,x-3),
> alpha4((x,y))=(y+2,5x),
> alpha5((x,y))=(-x,-y),
> alpha6((x,y))=(x+y,x-y).
> Geben sie für die Kollineationen die Gleichung der
> Bildgeraden an.
>
> Hallo,
>  kann mir bitte jemand anhand eines Beispiels zeigen, wie
> man das macht?
>  Bei einer Transformation muss man ja die Abbildung auf
> Bijektivität untersuchen. Ich kenn das aber nur in der Form
> einer Gleichung.Hier ist es aber in
> Koordinatenschreibweise. Wie soll man das hier machen??

Das Ergebnis der Abbildung ist doch wieder ein Vektor des [mm] $\IR^2$. [/mm]
Also kannst Du auch bei der Prüfung auf Injektivität mit einer Gleichung arbeiten: Beispielsweise
[mm] $\alpha_1(x_1,y_1)=\alpha_1(x_2,y_2)$. [/mm] Dann folgt [mm] $(2x_1+1, y_1^3)=(2x_2+1,y_2^3)$. [/mm] Nun sind aber zwei Paare genau dann gleich, wenn sie die gleiche 1. und 2. Komponente haben; also folgt [mm] $x_1=x_2$ [/mm] und [mm] $0=y_1^3-y_2^3=(y_1-y_2)(y_1^2+y_1y_2+y_2^2)$. [/mm]
Der 2. Faktor ist aber [mm] $=(y_1 +1/2y_2)^2 +3/4y_2^2$. [/mm] Nun sieht man leicht, daß der nur dann 0 ist, wenn [mm] $y_1=0=y_2$ [/mm] ist. Also ist auch [mm] $y_1=y_2$ [/mm] und daher [mm] $\alpha_1$ [/mm] injektiv.
Aber versuch doch mal, statt Injektivität und Surjektivität getrennt zu prüfen, jeweils die Umkehrabbildung der [mm] $\alpha_i$ [/mm] zu bestimmen.
Zu den Kollineationen bin ich leider überfragt.
Mfg
zahlenspieler

Bezug
        
Bezug
kollineation transformation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 09.01.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de