www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - kommutativ
kommutativ < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kommutativ: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:41 Di 16.12.2008
Autor: Hopeless33

Aufgabe
Man beweise: Wenn in einer (multiplaktiv geschriebenen) Gruppe G jedes a [mm] \in [/mm] G die Gleihung [mm] a^2=1 [/mm] erfüllt,dann ist G kommutativ

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, ich was kommutativ ist, aber leider keinen ersten Ansatz für die Aufgabe.
Kann mir jeand helfen?

        
Bezug
kommutativ: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Di 16.12.2008
Autor: blascowitz

Guten Abend.

Also zu zeigen ist: Jede Gruppe, in welcher jedes Element [mm] \not= [/mm] $id$ ordnung zwei hat, ist abelsch,also $xy=yx \ [mm] \forall [/mm] x,y [mm] \in [/mm] G$.
Jetzt versuch mal das Inverse von einem Element aus $G$ zu bestimmen, wenn [mm] $a^2=id$ [/mm] gilt. Was stellst du da fest?
Als nächstes nimm dir zwei elemente $x$ und $y$ her. Zeige dann das $xy=yx$ indem du zuerst die berechneten Inversen nutzt und dann noch ausnutzt das jedes Element [mm] \not= [/mm] id Ordnung zwei hat(Normalerweise müsste man hier noch eine Fallunterscheidung machen zwischen $xy=id$ und [mm] $yx\not=id$ [/mm] )

Bezug
                
Bezug
kommutativ: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:12 Di 16.12.2008
Autor: Hopeless33

hallo,danke für deine Antwort.

ich weiß nicht so richtig was mit id anzufangen, ist das die Exiatenz des neutralen Elements, oder das Inverse,auf jedenfall wenn ich angenommen a=2
nehme , ist dannn wohl [mm] 2^2=4=id? [/mm]

Bezug
                        
Bezug
kommutativ: Antwort
Status: (Antwort) fertig Status 
Datum: 23:17 Di 16.12.2008
Autor: blascowitz

Schuldigung ich meine [mm] $1_{G}=id$, [/mm] also das neutrale Element der Gruppe. Also ich meinte dass wenn [mm] $a^{2}=1_{G} \gdw a=a^{-1}$. [/mm] Warum gilt das? Was heißt das?
Dann guckt dir jetzt mal $xy=.....$

Bezug
                                
Bezug
kommutativ: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:27 Di 16.12.2008
Autor: Hopeless33

ja das wäre doch nur bei null der Fall oder?

denn das inverse von eins ist -1 , und 1 iist nicht gleich -1.

oder bezieht sich das auf den komplexen Zahlenbereich?

mit dem nachweis der Existenz des neutralen Elementes und des inversen Elementes wäre G bestimmt,oder?
wenn xy = yx ist, dann sind diese doch äquivalent,heisst transitiv, symmetrisch und refl.,oder?




Bezug
                                        
Bezug
kommutativ: Antwort
Status: (Antwort) fertig Status 
Datum: 23:54 Di 16.12.2008
Autor: blascowitz

Wieso denn nur bei Null. Du hast ja als Voraussetzung das [mm] $a^2=1$ [/mm] ist. Diese 1 hat nichts mit der ganzen Zahl 1 zu tun. Wir sind jetzt ja in einer Gruppe. Die [mm] $1=1_{G}$ [/mm] ist das Element aus $G$ für das gilt das [mm] $1_{G}a=a1_{G}=a [/mm] \ [mm] \forall [/mm] a [mm] \in [/mm] G$. Es gibt in einer Gruppe nur ein solches Element. Und das gibt es ja auch weil $G$ nach Voraussetzung eine Gruppe ist(schau dir mal die Axiome an eine Gruppe an)
Das hat auch nichts mit komplexen Zahlen zu tun
Und eine Gruppe ist kommutativ wenn für alle Elemente $x,y [mm] \in [/mm] G$ gilt das $xy=yx$. Das hat auch nichts mit Transitiv oder ähnlichem zu tun.


Bezug
        
Bezug
kommutativ: Antwort
Status: (Antwort) fertig Status 
Datum: 09:21 Mi 17.12.2008
Autor: fred97





Seien a,b [mm] \in [/mm] G. Dann :

$1 = [mm] (ab)^2 [/mm] = abab. $

Multiplikation von links mit a liefert:

$a = a^2bab = bab. $

Multiplikation von links mit b liefert:

$ba = b^2ab = ab$

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de