www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - kompl. Aufgabe
kompl. Aufgabe < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kompl. Aufgabe: Musterlösung und Einwände
Status: (Frage) beantwortet Status 
Datum: 16:12 Sa 22.01.2011
Autor: Leidi

Aufgabe
Gibt es eine Gerade h*, welche in der Ebene H liegt und durch den gemeinsamen Schnittpunkt aller Geraden h(a) geht, aber nicht zur Schar der Geraden h(a) gehört? Falls ja, gib die Geradenvorschrift für h* an.
h(a) : x = [mm] \vektor{2 \\8 \\ -5} [/mm] + [mm] \mu [/mm] * [mm] \vektor{a \\1 \\ 2} [/mm]
H: 2y - z - 21 = 0

Die Musterlösung des Lehrers kommt zu dem Ergebnis, dass es keine solche Gerade h* gibt. Ich glaube aber, eine solche Gerade gefunden zu haben in
m: x = [mm] \vektor{2 \\ 8 \\ -2} [/mm] + [mm] \lambda [/mm] * [mm] \vektor{1 \\ 0 \\ 0} [/mm]

Bei den folgenden Zwischenergebnissen decken sich unsere Ergebniss noch:
S(2|8|-2) ist der Schnittpunkt aller Geraden aus h(a).
Für den Richtungsvektor von h* muss gelten [mm] \vektor{x \\ y \\ 2y}, [/mm] da er senkrecht zum Normalenvektor der Ebene H ist.
Da h* S enthält, kann man die Gerade wie folgt darstellen:
[mm] \vektor{2 \\ 8 \\ -2} [/mm]  + [mm] \lambda [/mm] *  [mm] \vektor{x \\ y \\ 2y} [/mm]

Nun unterscheiden sich unsere Lösungen:
Der Lehrer vergleicht die beiden Geraden h* und h(a) und kommt zu dem Ergebnis, sie stimmen überein (also h* ist immer eine Gerade der Schar h(a)). Er begründet dies mit der beispielhaften Wahl von [mm] \lambda= \bruch{\mu}{y} [/mm] und x= y * a.

Mein Einwand:
Eine solche Wahl von x, also eine Abhängigkeit von x vom Scharparameter, wiederspricht doch dem Gedanken, dass die beiden Geraden(scharen) für ALLE x gleich sind.
Stellt man x = y * a nach a um (Fragestellung: "Gibt es für jede Gerade h* ein a, sodass h* und h(a) identisch sind?"), dann steht y im Nenner. Somit ist für y=0 kein a definiert (und man erhält beispielsweise meine oben genannte Gerade m).

Danke für's Lesen!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
kompl. Aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Sa 22.01.2011
Autor: Zwerglein

Hi, Leidi,

> Gibt es eine Gerade h*, welche in der Ebene H liegt und
> durch den gemeinsamen Schnittpunkt aller Geraden h(a) geht,
> aber nicht zur Schar der Geraden h(a) gehört? Falls ja,
> gib die Geradenvorschrift für h* an.
> h(a) : x = [mm]\vektor{2 \\ 8 \\ -5}[/mm] + [mm]\mu[/mm] * [mm]\vektor{a \\ 1 \\ 2}[/mm]
>
> H: 2y - z - 21 = 0
> Die Musterlösung des Lehrers kommt zu dem Ergebnis, dass
> es keine solche Gerade h* gibt. Ich glaube aber, eine
> solche Gerade gefunden zu haben in
> m: x = [mm]\vektor{2 \\ 8 \\ -2}[/mm] + [mm]\lambda[/mm] * [mm]\vektor{1 \\ 0 \\ 0}[/mm]

Die 3. Koordinate des Aufpunktes muss wohl -5 sein!

> Bei den folgenden Zwischenergebnissen decken sich unsere
> Ergebniss noch:
> S(2|8|-2) ist der Schnittpunkt aller Geraden aus h(a).

wie oben!

> Für den Richtungsvektor von h* muss gelten [mm]\vektor{x \\ y \\ 2y},[/mm]
> da er senkrecht zum Normalenvektor der Ebene H ist.
> Da h* S enthält, kann man die Gerade wie folgt
> darstellen:
> [mm]\vektor{2 \\ 8 \\ -2}[/mm] + [mm]\lambda[/mm] * [mm]\vektor{x \\ y \\ 2y}[/mm]

Und nochmals!

> Nun unterscheiden sich unsere Lösungen:
> Der Lehrer vergleicht die beiden Geraden h* und h(a) und
> kommt zu dem Ergebnis, sie stimmen überein (also h* ist
> immer eine Gerade der Schar h(a)). Er begründet dies mit
> der beispielhaften Wahl von [mm]\lambda= \bruch{\mu}{y}[/mm] und x=
> y * a.
>
> Mein Einwand:
> Eine solche Wahl von x, also eine Abhängigkeit von x vom
> Scharparameter, wiederspricht doch dem Gedanken, dass die
> beiden Geraden(scharen) für ALLE x gleich sind.
> Stellt man x = y * a nach a um (Fragestellung: "Gibt es
> für jede Gerade h* ein a, sodass h* und h(a) identisch
> sind?"), dann steht y im Nenner. Somit ist für y=0 kein a
> definiert (und man erhält beispielsweise meine oben
> genannte Gerade m).

M.E. hast Du Recht: Die Gerade m gehört NICHT zur Geradenschar h(a)!


mfG!
Zwerglein


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de