www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - komplexe Gleichung lösen
komplexe Gleichung lösen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Gleichung lösen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:50 Mo 01.03.2010
Autor: peeetaaa

Aufgabe
Gibt es Lösungen z [mm] \in \IC [/mm] von sin(z)= [mm] \wurzel{3}. [/mm]
Begründen Sie ihre Antwort.
Hinweis: Betrachten Sie zunächst w=exp(iz)

Hallo zusammen,

bei dieser Aufgabe hab ich so meine Schwierigkeiten!
Denn ich hab keine Ahnung wie ich da rangehen soll!
Muss ich sin(z) umschreiben in [mm] \bruch{exp(iz)-exp(-iz)}{2i}? [/mm]
kann mir da vllt jemand weiterhelfen?

        
Bezug
komplexe Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Mo 01.03.2010
Autor: fred97


> Gibt es Lösungen z [mm]\in \IC[/mm] von sin(z)= [mm]\wurzel{3}.[/mm]
>  Begründen Sie ihre Antwort.
>  Hinweis: Betrachten Sie zunächst w=exp(iz)
>  Hallo zusammen,
>  
> bei dieser Aufgabe hab ich so meine Schwierigkeiten!
>  Denn ich hab keine Ahnung wie ich da rangehen soll!
>  Muss ich sin(z) umschreiben in
> [mm]\bruch{exp(iz)-exp(-iz)}{2i}?[/mm]
>  kann mir da vllt jemand weiterhelfen?



Die Frage ist also ob die Gleichung

            $ [mm] \bruch{exp(iz)-exp(-iz)}{2i}= \wurzel{3} [/mm] $


Lösungen hat. Brechnen sollst Du diese Lösungen ja nicht (das entnehme ich jedenfalls der Aufgabenstellung). Es geht also nur um die Existenz von Lösungen.

Setze zunächst $w = exp( iz)$ .

1. Hat die Gleichung

            (*) $w- [mm] \bruch{1}{w}= [/mm] 2 [mm] \wurzel{3}*i$ [/mm] Lösungen w ?

              Ja hat sie ! begründe warum.

2. Sei [mm] w_0 [/mm] eine Lösung von (*). Hat die Gleichung

           (**) [mm] e^v [/mm] = [mm] w_0 [/mm]  Lösungen v ?

           Ja hat sie ! begründe warum.

3. Sei [mm] v_0 [/mm] eine Lösung von (**). Welche Eigenschaft hat dann [mm] $z_0:= -iv_0$ [/mm]  ?

FRED

Bezug
                
Bezug
komplexe Gleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 So 07.03.2010
Autor: Gratwanderer

Hallo,

habe zu der Aufgabe noch folgende Fragen:


> 1. Hat die Gleichung
>  
> (*) [mm]w- \bruch{1}{w}= 2 \wurzel{3}*i[/mm] Lösungen w ?
>  
> Ja hat sie ! begründe warum.

Ich komme hier leider nicht auf eine passende Begründung.

> 2. Sei [mm]w_0[/mm] eine Lösung von (*). Hat die Gleichung
>  
> (**) [mm]e^v[/mm] = [mm]w_0[/mm]  Lösungen v ?
>  
> Ja hat sie ! begründe warum.

Hier komme ich leider auch auf keine Begründung.

>  
> 3. Sei [mm]v_0[/mm] eine Lösung von (**). Welche Eigenschaft hat
> dann [mm]z_0:= -iv_0[/mm]  ?



Es wäre nett wenn mir jemand weiterhelfen kann ;)

Viele Grüße,

Gratwanderer

Bezug
                        
Bezug
komplexe Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:01 Mo 08.03.2010
Autor: fred97


> Hallo,
>  
> habe zu der Aufgabe noch folgende Fragen:
>  
>
> > 1. Hat die Gleichung
>  >  
> > (*) [mm]w- \bruch{1}{w}= 2 \wurzel{3}*i[/mm] Lösungen w ?
>  >  
> > Ja hat sie ! begründe warum.
>  
> Ich komme hier leider nicht auf eine passende Begründung.


Multipliziere mit w durch und Du erhälst eine quadratische Gleichung für w. Hat diese Lösungen ?


>  
> > 2. Sei [mm]w_0[/mm] eine Lösung von (*). Hat die Gleichung
>  >  
> > (**) [mm]e^v[/mm] = [mm]w_0[/mm]  Lösungen v ?
>  >  
> > Ja hat sie ! begründe warum.
>  
> Hier komme ich leider auch auf keine Begründung.

Jede komplexe Zahl [mm] \ne [/mm] 0 hat Logarithmen

FRED



>  >  
> > 3. Sei [mm]v_0[/mm] eine Lösung von (**). Welche Eigenschaft hat
> > dann [mm]z_0:= -iv_0[/mm]  ?
>  
>
>
> Es wäre nett wenn mir jemand weiterhelfen kann ;)
>  
> Viele Grüße,
>
> Gratwanderer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de