www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - komplexe Gleichung umstellen
komplexe Gleichung umstellen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Gleichung umstellen: Umstellung
Status: (Frage) überfällig Status 
Datum: 18:03 Sa 20.01.2007
Autor: kingkong

Aufgabe
Forme folgende Gleichung nach "z" um!

[mm] x_{2}^2+2*-c_{2}*x_{2}-c_{2}^2+r_{1}^2-x_{1}^2-2*-c_{1}*x_{1}+c_{1}^2+2*\wurzel{z}*(-d_{2})-d_{2}^2=r_{2}^2 [/mm]

Hintergrund:

Diese Aufgabe steht in Verbindung zu einer anderen Aufgabe. Ziel ist es eine allgemein geltende Formel aufzustellen mit der es möglich ist die x Werte der Schnittpunkte sich zwei schneidener Kreise im Koordinatensystem auszurechnen.

Bisher bin ich wie folgt vorgegangen:

Allgemeine Kreisgleichung = [mm] (x-c)^2+(y-d)^2=r^2 [/mm]

c ist die x Koordinate des Mittelpunktes des Kreises und die der dazugehörige y Wert. Mit r ist selbstverständlich der Radius gemeint.

So diese Gleichung habe ich nach y umgestellt:

y = [mm] \wurzel{r^2-(x-c)^2}+d [/mm]
y = [mm] \wurzel{z}+d [/mm]

Dies wird nun also in die andere Kreisgleichung eingesetzt.
Nachdem ich das getan habe, habe ich die Klammern aufgelöst. So jetzt wollte ich die oben aufgeführte Gleichung nach dem verbleibenden z umstellen.


Ich hoffe, dass durch meine Logik jemand durchsteigt und mir helfen kann.

        
Bezug
komplexe Gleichung umstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Sa 20.01.2007
Autor: informix

Hallo kingkong,

> Forme folgende Gleichung nach "z" um!
>  
> [mm]x_{2}^2+2*-c_{2}*x_{2}-c_{2}^2+r_{1}^2-x_{1}^2-2*-c_{1}*x_{1}+c_{1}^2+2*\wurzel{z}*(-d_{2})-d_{2}^2=r_{2}^2[/mm]
>  Hintergrund:
>  
> Diese Aufgabe steht in Verbindung zu einer anderen Aufgabe.
> Ziel ist es eine allgemein geltende Formel aufzustellen mit
> der es möglich ist die x Werte der Schnittpunkte sich zwei
> schneidener Kreise im Koordinatensystem auszurechnen.
>  
> Bisher bin ich wie folgt vorgegangen:
>  
> Allgemeine Kreisgleichung = [mm](x-c)^2+(y-d)^2=r^2[/mm]
>  
> c ist die x Koordinate des Mittelpunktes des Kreises und
> die der dazugehörige y Wert. Mit r ist selbstverständlich
> der Radius gemeint.
>  
> So diese Gleichung habe ich nach y umgestellt:
>  
> y = [mm]\wurzel{r^2-(x-c)^2}+d[/mm]
>  y = [mm]\wurzel{z}+d[/mm]
>  
> Dies wird nun also in die andere Kreisgleichung
> eingesetzt.
>  Nachdem ich das getan habe, habe ich die Klammern
> aufgelöst. So jetzt wollte ich die oben aufgeführte
> Gleichung nach dem verbleibenden z umstellen.
>
>
> Ich hoffe, dass durch meine Logik jemand durchsteigt und
> mir helfen kann.

wenn du selbst schon Schwierigkeiten hast durchzusteigen, verwende als erstes mal "sprechende" Variablen:
[mm] M_1 (x_1|y_1) [/mm]  und  [mm] M_2 (x_2|y_2) [/mm]

also:
[mm] (x-x_1)^2+(y-y_1)^2=r_1^2 [/mm]

[mm] (x-x_2)^2+(y-y_2)^2=r_2^2 [/mm]

Ich glaube, die Einsetz-Methode, die du angewandt hast, ist vielleicht nicht so günstig. Vielleicht kommt man mit der Additions-/Subtraktionsmethode weiter?
Idee: eine Geradengleichung erzeugen, die man dann mit einer der Kreisgleichungen zusammenbringt?

Allerdings gibt es ja keine eindeutige Lösung, weil es ja i.d.R. immer zwei Schnittpunkte gibt.

Gruß informix

Bezug
        
Bezug
komplexe Gleichung umstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Sa 20.01.2007
Autor: XPatrickX


> So diese Gleichung habe ich nach y umgestellt:
>  
> y = [mm]\wurzel{r^2-(x-c)^2}+d[/mm]
>  y = [mm]\wurzel{z}+d[/mm]
>  

Hallo, du weißt schon, dass dies keine äquivalenzumformung ist und dir so eine Lösung verloren geht!?

Gruß Patrick

Bezug
        
Bezug
komplexe Gleichung umstellen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Di 23.01.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de