www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - komplexe Zahlen
komplexe Zahlen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Zahlen: Lösen einer Gleichung
Status: (Frage) beantwortet Status 
Datum: 21:00 So 17.12.2006
Autor: Phoney

Aufgabe
Berechnen Sie alle Lösungen der Gleichung [mm] z^2+i [/mm] = 0 und schreiben Sie diese in der Form
a+bi

Hallo.

Ich habe da leider keine Ahnung, soll ich dann:

[mm] $z^2+i=0$ [/mm]

[mm] $z^2 [/mm] = - i$

$z = [mm] \wurzel{i}$ [/mm]
Was ist denn Wurzel i? Das gibts doch gar nicht. Mein Ansatz muss also falsch sein....

Grüße
Phoney


        
Bezug
komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 So 17.12.2006
Autor: zahlenspieler

Hallo Phoney,
> Berechnen Sie alle Lösungen der Gleichung [mm]z^2+i[/mm] = 0 und
> schreiben Sie diese in der Form
>  a+bi
>  Hallo.
>  
> Ich habe da leider keine Ahnung, soll ich dann:
>  
> [mm]z^2+i=0[/mm]
>  
> [mm]z^2 = - i[/mm]
>  
> [mm]z = \wurzel{i}[/mm]
>  Was ist denn Wurzel i? Das gibts doch gar
> nicht. Mein Ansatz muss also falsch sein....

Wieso? In den komplexen Zahlen gibt's zu *jeder* natürlichen Zahl $n$ $n$ verschiedene Lösungen der Gleichung [mm] $z^n=1$. [/mm] Jetzt mußt Du nur noch schaun: Für welche Werte von [mm] $\phi$ [/mm] ist [mm] $\cos{4\phi}=0,\quad \sin{4\phi}=-1$? [/mm]


Bezug
                
Bezug
komplexe Zahlen: WEgen dem Ansatz
Status: (Frage) beantwortet Status 
Datum: 22:17 So 17.12.2006
Autor: Phoney

Guten Abend.

>  > Berechnen Sie alle Lösungen der Gleichung [mm]z^2+i[/mm] = 0 und

> > schreiben Sie diese in der Form
>  >  a+bi
>  >  Hallo.
>  >  
> > Ich habe da leider keine Ahnung, soll ich dann:
>  >  
> > [mm]z^2+i=0[/mm]
>  >  
> > [mm]z^2 = - i[/mm]
>  >  
> > [mm]z = \wurzel{i}[/mm]
>  >  Was ist denn Wurzel i? Das gibts doch
> gar
> > nicht. Mein Ansatz muss also falsch sein....
>  Wieso? In den komplexen Zahlen gibt's zu *jeder*
> natürlichen Zahl [mm]n[/mm] [mm]n[/mm] verschiedene Lösungen der Gleichung
> [mm]z^n=1[/mm]. Jetzt mußt Du nur noch schaun: Für welche Werte von
> [mm]\phi[/mm] ist [mm]\cos{4\phi}=0,\quad \sin{4\phi}=-1[/mm]?

Das habe ich ja noch nie gesehen.

Wie kommt man auf [mm] ]\cos{(4\phi)}=0 [/mm] und [mm] \sin{(4\phi)}=-1 [/mm]

Ich meine, warum die 4? Warum die Null und die Minus 1? Und warum die Minus 1 beim Sinus und die Null beim Cosinus???

Die Formel nenn ich mal heftig.

Bezug
                        
Bezug
komplexe Zahlen: Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:07 Mo 18.12.2006
Autor: Phoney

Hallo.

Aus Interesse möchte ich aber auch wissen, wie das mit dem Zahlenspieler-Ansatz hier zu verstehen ist.

Bezug
                                
Bezug
komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:19 Mi 20.12.2006
Autor: angela.h.b.

Hallo,

ich nenne Dir ein paar Stichworte.

Polardarstellung der komplexen Zahlen:
jede komplexe Zahl z läßt sich schreiben als [mm] z=r(cos\phi [/mm] + [mm] isin\phi) [/mm] mit [mm] r\in \IR^+_0 [/mm] und [mm] \phi\in [0,2\pi] [/mm] .

Formel v. Moivre: für [mm] z=r(cos\phi [/mm] + [mm] isin\phi) [/mm] ist [mm] z^n=r^n(cos(n\phi) [/mm] + [mm] isin(n\phi)) [/mm]

Dein "Fall" in Kürze:

Du suchst ein z mit [mm] z^2=-i [/mm]

Man kann sich überlegen, daß |z|=1, also [mm] z=cos\phi [/mm] + [mm] isin\phi [/mm] .

Weiter folgt [mm] 1=z^4=cos(4\phi)+ isin(4\phi) [/mm]

[mm] ==>1=cos(4\phi) [/mm] und [mm] 0=sin(4\phi) [/mm]

Hieraus erhältst Du die Winkel.

Gruß v. Angela



Bezug
        
Bezug
komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 So 17.12.2006
Autor: Zwerglein

Hi, Phoney,

> Berechnen Sie alle Lösungen der Gleichung [mm]z^2+i[/mm] = 0 und
> schreiben Sie diese in der Form
>  a+bi
>  
> Ich habe da leider keine Ahnung, soll ich dann:
>  
> [mm]z^2+i=0[/mm]
>  
> [mm]z^2 = - i[/mm]
>  
> [mm]z = \wurzel{i}[/mm]

Das muss aber eigentlich [mm] \pm \wurzel{-i} [/mm] heißen.

Ich würd' von Anfang an mit folgendem Ansatz rechnen:

z = a + bi.  (mit reellen Zahlen a und b!)

Aus [mm] z^{2} [/mm] + i = 0  wird dann:

[mm] a^{2} [/mm] +2abi - [mm] b^{2} [/mm] + i = 0

Daraus erhältst Du:
(I) [mm] a^{2} [/mm] - [mm] b^{2} [/mm] = 0 (also: a = [mm] \pm [/mm] b)
(II) 2abi + i = 0  (also: 2ab = -1)
Woraus Du a und b berechnest und damit die Lösungen Deiner Gleichung.

mfG!
Zwerglein


Bezug
                
Bezug
komplexe Zahlen: Alles klar!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:15 So 17.12.2006
Autor: Phoney

Hallo.

So ist es klar!

Dankeschön

Viele Grüße :-)
Phoney

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de