www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - komplexe Zahlen
komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:04 Mi 15.06.2011
Autor: al3pou

Hallo,

ich soll die komplexen Zahlen 3; 3+3j; 3j in die eulersche Schreibweise überführen.
Wenn ich mich nicht irre, sieht die Schreibweise ja so aus:

   [mm] z_{*} [/mm] = [mm] z*e^{j\alpha} [/mm] = [mm] z(cos(\alpha)+ j*sin(\alpha)) [/mm]

Wenn ich das ganze jetzt für die 3 machen müsste, würde ich schreiben


  [mm] z_{*} [/mm] = [mm] 3*e^{j*0} [/mm]

und für 3+3j wüsste ich nicht weiter. Also kann mir einer erklären, wie man das macht?

LG

        
Bezug
komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Mi 15.06.2011
Autor: schachuzipus

Hallo al3pou,


> Hallo,
>  
> ich soll die komplexen Zahlen 3; 3+3j; 3j in die eulersche
> Schreibweise überführen.
>  Wenn ich mich nicht irre, sieht die Schreibweise ja so
> aus:
>  
> [mm]z_{*}[/mm] = [mm]z*e^{j\alpha}[/mm]

Nein, richtig: [mm]z=|z|\cdot{}e^{j\alpha}[/mm]

> = [mm]z(cos(\alpha)+ j*sin(\alpha))[/mm]


[mm]=|z|(\cos(\alpha)+j\sin(\alpha))[/mm]

> Wenn ich das ganze jetzt für die 3 machen müsste, würde
> ich schreiben
>  
>
> [mm]z_{*}[/mm] = [mm]3*e^{j*0}[/mm]

[ok] und [mm]e^0=0[/mm]

>  
> und für 3+3j wüsste ich nicht weiter. Also kann mir einer
> erklären, wie man das macht?

Bestimme [mm]|3+3j|[/mm] und den Winkel [mm]\alpha[/mm], den [mm]3+3j[/mm] mit der reellen Achse einschließt, also [mm]\operatorname{arg}(3+3j)[/mm]

Dafür hattet ihr eine Formel; hier geht's schneller, wenn du dir [mm]3+3j=3(1+j)[/mm] ins Koordinatensystem einzeichnest und den Winkel abliest.

>  
> LG

Gruß

schachuzipus


Bezug
                
Bezug
komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 Do 16.06.2011
Autor: al3pou

Okay, aber jetzt hab ich ein neues Problem. Ich soll 3j in die Eulersche-Schreibweise überführen, aber wenn ich den Winkelberechne, dann steht da ja

       [mm] arctan(\bruch{3}{0}) [/mm]

und das kann man nicht lösen oder was mache ich falsch?

LG

Bezug
                        
Bezug
komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Do 16.06.2011
Autor: Diophant

Hallo,

3j ist eine imaginäre Zahl, liegt also auf der imaginären Achse. Damit kennst du doch bereits Betrag und Argument, was brauchst du noch mehr? ;-)

Gruß, Diophant

Bezug
                                
Bezug
komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 Do 16.06.2011
Autor: al3pou

Achso also wäre das argument = 90 bzw. [mm] \bruch{\pi}{2} [/mm]

und da mit wäre [mm] z_{*}= 3e^{j*\bruch{\pi}{2}} [/mm] = 3j

Hab hier so stehen, das es eine Rechenregel ist.

[mm] e^{j*\bruch{\pi}{2}}=j [/mm]

Bezug
                                        
Bezug
komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:28 Do 16.06.2011
Autor: Diophant

Hallo,

ja, das ist richtig. Aber prinzipiell ist Vorsicht ist angesagt: wenn der Vorfaktor negativ ist, so ist das Argument nicht [mm] \frac{\pi}{2} [/mm] sondern [mm] \frac{3}{2}\pi. [/mm]

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de