www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - komplexe Zahlen, goniometrisch
komplexe Zahlen, goniometrisch < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Zahlen, goniometrisch: Subtraktion
Status: (Frage) beantwortet Status 
Datum: 21:38 Do 20.01.2005
Autor: needHelpForMe

Hallo,

ich komme mit der Darstellung komplexer Zahlen nicht ganz klar.

Vielleicht kann mir ja mal jemand auf die Sprünge helfen, wäre
echt toll?

[mm] Z_1 [/mm] = a + ib (Normalform) [a + ib = r E(phi)]

mit  [mm] Z_1 [/mm] = 2(cos 30° + i sin 30°), also [mm] Z_1 [/mm] = r E(phi).
       [mm] Z_2 [/mm] = 3(cos 60° + i sin 60°)

berechnet werden soll jetzt [mm] Z_1 [/mm] - [mm] Z_2, [/mm] also
2E(30°)-3E(60°) = r E(?)

Kann mir bitte jemand erklären wie das Geht?

Weiß jemand ein Buch oder einen Link, der mir hier
weiterhelfen könnte?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


        
Bezug
komplexe Zahlen, goniometrisch: Antwort
Status: (Antwort) fertig Status 
Datum: 23:36 Do 20.01.2005
Autor: e.kandrai

Für Addition und Subtraktion ist die Normalform [mm]z=a+i \cdot b[/mm] optimal, für Multiplikation und Division hingegen die Darstellung [mm]z=e^{i \varphi}[/mm] (klick mal auf die Formeln, in nem neuen Fenster siehst du dann den Quellcode, wie man solche Formeln darstellen kann).

Du musst also nur noch die sin- und cos-Werte ausrechnen, und kannst dann beide komplexe Zahlen in der Normalform darstellen.
Dabei gilt: [mm]sin(30°)\ =\ cos(60°)\ = \bruch{1}{2}[/mm] und [mm]sin(60°)\ =\ cos(30°)\ =\ \bruch{\wurzel{2}}{2}[/mm].

Also bei dir: [mm]z_1=2 \cdot (\bruch{\wurzel{2}}{2} + i \cdot \bruch{1}{2})\ =\ \wurzel{2} + i \cdot 1[/mm].

Das [mm]z_2[/mm] kannst du genauso umwandeln.

Und für die Subtraktion gilt dann: [mm]z_1=a+ib[/mm], [mm]z_2=c+id[/mm] [mm]\Rightarrow[/mm]  [mm]z_1-z_2=a+ib-(c+id)\ =\ a+ib-c-id\ =\ (a-c) + i \cdot (b-d)[/mm].

Noch eine Bemerkung zur Darstellung: [mm]z=2 \cdot (cos(30°) + i \cdot sin(30°))[/mm] entspricht [mm]z=e^{i \cdot \bruch{\pi}{6}}[/mm], weil 30° (Gradmaß) genau [mm]\bruch{\pi}{6}[/mm] (Bogenmaß) entspricht.

Bezug
        
Bezug
komplexe Zahlen, goniometrisch: Hinweis auf Wikipedia
Status: (Antwort) fertig Status 
Datum: 09:43 Fr 21.01.2005
Autor: informix

Hallo,

[guckstduhier]  []Komplexe Zahlen


Bezug
                
Bezug
komplexe Zahlen, goniometrisch: thanks
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:24 Sa 22.01.2005
Autor: needHelpForMe

Hallo,

vielen Dank an alle für die Hilfe.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de