www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - komplexwertige Wurzeln
komplexwertige Wurzeln < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexwertige Wurzeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 So 16.11.2008
Autor: Newcool

Aufgabe 1
Bestimmen Sie alle 3 komplexen Lösungen der Gleichung [mm] z^3=1 [/mm]

Aufgabe 2
Bestimmen Sie alle 3 komplexen Lösungen der Gleichung [mm] z^3 [/mm] = -1

Aufgabe 3
Es seien und r>0 und [mm] \phi [/mm] reelle Zahlen. Bestimmen Sie alle komplexen Lösungen der Gleichung [mm] z^3=r*e^i\phi [/mm]

Aufgabe 4
Es sei n>=2 eine natürliche Zahl und es seien r>0 und [mm] \phi [/mm] reelle Zahlen. Bestimmen Sie alle n komplexen Lösungen [mm] w_1,w_2,...,w_n [/mm] der Gleichung [mm] z^n =r*e^i\phi [/mm] und spezialisieren Sie Ihre Ausdrücke für [mm] w_k [/mm] auf die Fälle(Gleichungen) [mm] z^n [/mm] =-1, [mm] z^n=r [/mm] und [mm] z^n=-r [/mm]

Hallo Ihr,

Und zwar haben wir die oben genannten Aufgaben bekommen, und ich verstehe teilweise nicht was ich tun soll =) besser gesagt versteh ich im moment gar nichts xD.

Kennt Ihr zufällig ein paar Internet-Seiten auf denen dieses Thema erklärt wird oder könnt ihr mir ein paar Tipps geben wie ich diese Aufgaben anfangen muss ?

Vielen Dank schonmal für eure Hilfe.

MFG
Newcool



        
Bezug
komplexwertige Wurzeln: Aufgabe 1+2
Status: (Antwort) fertig Status 
Datum: 16:22 So 16.11.2008
Autor: MathePower

Hallo Newcool,

> Bestimmen Sie alle 3 komplexen Lösungen der Gleichung
> [mm]z^3=1[/mm]
>  Bestimmen Sie alle 3 komplexen Lösungen der Gleichung [mm]z^3[/mm]
> = -1
>  Es seien und r>0 und [mm]\phi[/mm] reelle Zahlen. Bestimmen Sie
> alle komplexen Lösungen der Gleichung [mm]z^3=r*e^i\phi[/mm]
>  Es sei n>=2 eine natürliche Zahl und es seien r>0 und [mm]\phi[/mm]
> reelle Zahlen. Bestimmen Sie alle n komplexen Lösungen
> [mm]w_1,w_2,...,w_n[/mm] der Gleichung [mm]z^n =r*e^i\phi[/mm] und
> spezialisieren Sie Ihre Ausdrücke für [mm]w_k[/mm] auf die
> Fälle(Gleichungen) [mm]z^n[/mm] =-1, [mm]z^n=r[/mm] und [mm]z^n=-r[/mm]
>  Hallo Ihr,
>  
> Und zwar haben wir die oben genannten Aufgaben bekommen,
> und ich verstehe teilweise nicht was ich tun soll =) besser
> gesagt versteh ich im moment gar nichts xD.
>  
> Kennt Ihr zufällig ein paar Internet-Seiten auf denen
> dieses Thema erklärt wird oder könnt ihr mir ein paar Tipps
> geben wie ich diese Aufgaben anfangen muss ?


Eine Lösung der Gleichung

[mm]z^{3}=1[/mm]

bzw.

[mm]z^{3}=-1[/mm]

ist sofort ersichtlich.

Um die restlichen 2 Lösungen zu ermitteln, wird eine Polynomdivison durchgeführt.

[mm]\left(z^{3}-c\right):\left(z-z_{0}\right)= z^{2}+ \ \dots [/mm]

,  wobei hier [mm]c \in \left{-1,1\right}[/mm]

und [mm]z_{0}[/mm] eine Lösung von [mm]z^{3}-c=0[/mm] ist.


>  
>  
> Vielen Dank schonmal für eure Hilfe.
>  
> MFG
>  Newcool
>  
>  


Gruß
MathePower

Bezug
                
Bezug
komplexwertige Wurzeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 So 16.11.2008
Autor: Newcool

Oke in dem Fall wäre das dann so (wenn man es erweitern würde)

erstmal müsste ich die 1 rüber holen:

[mm] z^3-1 [/mm] = 0

dann sozusagen ums ausführlicher hinzuschreiben daraus das machen:

[mm] z^3+0z^2+0z-1 [/mm] = 0

anschließend Polynomdivision wobei dann:

[mm] z^2+z+1 [/mm]

rauskommt.

Dadurch kann ich nun mit der mitternachtsformel folgendendes machen:

x1 = 0,8
x2 = 2,1

oder hab ich mich jezt irgendwie vertan ?


Gruß und danke für die hilfe.

Newcool


Bezug
                        
Bezug
komplexwertige Wurzeln: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 So 16.11.2008
Autor: MathePower

Hallo Newcool,

> Oke in dem Fall wäre das dann so (wenn man es erweitern
> würde)
>  
> erstmal müsste ich die 1 rüber holen:
>  
> [mm]z^3-1[/mm] = 0
>  
> dann sozusagen ums ausführlicher hinzuschreiben daraus das
> machen:
>  
> [mm]z^3+0z^2+0z-1[/mm] = 0
>  
> anschließend Polynomdivision wobei dann:
>  
> [mm]z^2+z+1[/mm]
>
> rauskommt.
>  
> Dadurch kann ich nun mit der mitternachtsformel
> folgendendes machen:
>  
> x1 = 0,8
>  x2 = 2,1
>  
> oder hab ich mich jezt irgendwie vertan ?
>  


Da hast Dich jetzt irgendwie vertan.

Es müssen hier komplexe Lösungen herauskommen.


>
> Gruß und danke für die hilfe.
>  
> Newcool
>  


Gruß
MathePower

Bezug
                                
Bezug
komplexwertige Wurzeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 So 16.11.2008
Autor: Newcool

Hey dank dir,

oke ich schreib jetzt einfach mal den Lösungsweg hin =)

also das mit

[mm] z^3 [/mm] - 1 = 0

stimmt ja denke ich oder ?

oke daraus bau ich mir jetzt meine Polynomdivision auf.

[mm] (z^3 [/mm] + [mm] 0z^2 [/mm] + 0z - 1) : (z-1) = [mm] z^2 [/mm]
[mm] -(z^3 [/mm] - [mm] z^2 [/mm] )

[mm] (z^2 [/mm] +0z - 1) : (z-1) = [mm] z^2 [/mm] +1z
[mm] -(z^2 [/mm] -1z)

[mm] (1z-1):(z-1)=z^2+1z+1 [/mm]
-(z-1)

=0

also hab ich ja [mm] z^2+1z+1 [/mm] rausbekommen

so nun muss man ja mitternachtsformel anwendern oder irre ich mich da ?

also [mm] ax^2 [/mm] + bx + c

und die mitternachtsformel ist ja:
[mm] x_1|2 [/mm] = (-b +- [mm] \wurzel{b^2 -4*a*c})/2a [/mm]

also setze ich ein:

[mm] x_1|2 [/mm] = (-1 +- [mm] \wurzel{1^2 -4*1*1})/2*1 [/mm]

daraus folgt:

[mm] x_1|2 [/mm] = (-1 +- [mm] \wurzel{1 -4})/2 [/mm]

und ergibt dann:

[mm] x_1|2 [/mm] = (-1 +- [mm] \wurzel{-3})/2 [/mm]

oke und wie muss ich dann hier weiter machen ?

Gruß Newcool


Bezug
                                        
Bezug
komplexwertige Wurzeln: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 So 16.11.2008
Autor: MathePower

Hallo Newcool,

> Hey dank dir,
>
> oke ich schreib jetzt einfach mal den Lösungsweg hin =)
>  
> also das mit
>
> [mm]z^3[/mm] - 1 = 0
>
> stimmt ja denke ich oder ?
>  
> oke daraus bau ich mir jetzt meine Polynomdivision auf.
>  
> [mm](z^3[/mm] + [mm]0z^2[/mm] + 0z - 1) : (z-1) = [mm]z^2[/mm]
> [mm]-(z^3[/mm] - [mm]z^2[/mm] )
>  
> [mm](z^2[/mm] +0z - 1) : (z-1) = [mm]z^2[/mm] +1z
>  [mm]-(z^2[/mm] -1z)
>  
> [mm](1z-1):(z-1)=z^2+1z+1[/mm]
>  -(z-1)
>  
> =0
>  
> also hab ich ja [mm]z^2+1z+1[/mm] rausbekommen
>  
> so nun muss man ja mitternachtsformel anwendern oder irre
> ich mich da ?
>  
> also [mm]ax^2[/mm] + bx + c
>  
> und die mitternachtsformel ist ja:
>  [mm]x_1|2[/mm] = (-b +- [mm]\wurzel{b^2 -4*a*c})/2a[/mm]
>  
> also setze ich ein:
>  
> [mm]x_1|2[/mm] = (-1 +- [mm]\wurzel{1^2 -4*1*1})/2*1[/mm]
>  
> daraus folgt:
>  
> [mm]x_1|2[/mm] = (-1 +- [mm]\wurzel{1 -4})/2[/mm]
>  
> und ergibt dann:
>  
> [mm]x_1|2[/mm] = (-1 +- [mm]\wurzel{-3})/2[/mm]
>  
> oke und wie muss ich dann hier weiter machen ?


Die Lösungen ergeben sich zu:

[mm]x_{1,2}=\bruch{-1 \pm \wurzel{-3}}{2}=\bruch{-1 \pm i*\wurzel{3}}{2}=- \bruch{1}{2} \pm i*\bruch{\wurzel{3}}{2}[/mm]

Somit hast Du alle Lösungen der Gleichung

[mm]z^{3}=1[/mm] gefunden:

[mm]z_{0}=1[/mm]

[mm]z_{1}=- \bruch{1}{2} - i*\bruch{\wurzel{3}}{2}[/mm]

[mm]z_{2}=- \bruch{1}{2} + i*\bruch{\wurzel{3}}{2}[/mm]


>  
> Gruß Newcool
>  


Gruß
MathePower

Bezug
                                                
Bezug
komplexwertige Wurzeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 So 16.11.2008
Autor: Newcool

Oke dank dir das hab ich dann jetzt verstanden =) xD kann mir das sicher merken =)

also wäre es bei aufgabe 3 dann folgendermaßen:

[mm] z^3 [/mm] = 8

ergibt [mm] z^3 [/mm] - 8

dadurch lässt sich dann [mm] z^2 [/mm] +2z-4 berechnen

welches ich durch polynomdivision in

[mm] z_1 [/mm] = -1 + i* [mm] \wurzel{20}/2 [/mm]

[mm] z_2 [/mm] = -1 - i* [mm] \wurzel{20}/2 [/mm]

umwandel

aber was ist [mm] z_0 [/mm] ?

Gruß Newcool


Bezug
                                                        
Bezug
komplexwertige Wurzeln: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 So 16.11.2008
Autor: MathePower

Hallo Newcool,

> Oke dank dir das hab ich dann jetzt verstanden =) xD kann
> mir das sicher merken =)
>  
> also wäre es bei aufgabe 3 dann folgendermaßen:
>  
> [mm]z^3[/mm] = 8
>  
> ergibt [mm]z^3[/mm] - 8


Hmm. Aufgabe 3 lautet doch ganz anders: [mm]z^{3}=r*e^{i*\varphi}[/mm]


>  
> dadurch lässt sich dann [mm]z^2[/mm] +2z-4 berechnen
>  
> welches ich durch polynomdivision in
>
> [mm]z_1[/mm] = -1 + i* [mm]\wurzel{20}/2[/mm]
>  
> [mm]z_2[/mm] = -1 - i* [mm]\wurzel{20}/2[/mm]
>  
> umwandel
>  
> aber was ist [mm]z_0[/mm] ?


Welche Lösung hast Du als erstes herausgefunden?


>  
> Gruß Newcool
>  


Gruß
MathePower

Bezug
                                                                
Bezug
komplexwertige Wurzeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:09 Mo 17.11.2008
Autor: Newcool

Aufgabe
Es sei n>= 2 eine Natürliche Zahl und es seien r>0 und [mm] \phi [/mm] reelle Zahlen. Bestimmen Sie alle n komplexen Lösungen [mm] w_1, w_2,... w_3 [/mm] der Gleichung [mm] z^n [/mm] = [mm] r*e^i\phi [/mm] und spezialisieren Sie ihre Ausdrücke für [mm] w_k [/mm] für die Fälle (Gleichungen) [mm] z^n [/mm] = -1, [mm] z^n [/mm] = r und [mm] z^n [/mm] = -r

Hallo zusammen,

könnte mir noch jemand bei dieser Aufgabe helfen.


Vielen Dank schonmal,

Gruß Newcool

Bezug
                                                                        
Bezug
komplexwertige Wurzeln: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Mo 17.11.2008
Autor: MathePower

Hallo Newcool,

> Es sei n>= 2 eine Natürliche Zahl und es seien r>0 und [mm]\phi[/mm]
> reelle Zahlen. Bestimmen Sie alle n komplexen Lösungen [mm]w_1, w_2,... w_3[/mm]
> der Gleichung [mm]z^n[/mm] = [mm]r*e^i\phi[/mm] und spezialisieren Sie ihre
> Ausdrücke für [mm]w_k[/mm] für die Fälle (Gleichungen) [mm]z^n[/mm] = -1, [mm]z^n[/mm]
> = r und [mm]z^n[/mm] = -r
>  Hallo zusammen,
>  
> könnte mir noch jemand bei dieser Aufgabe helfen.
>  


Beachte hier die Periodizität der Exponentialfunktion im Komplexen.


>
> Vielen Dank schonmal,
>  
> Gruß Newcool


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de