www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - komplexwertiges polynom
komplexwertiges polynom < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexwertiges polynom: rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:47 Sa 02.09.2006
Autor: stefy

Aufgabe
ich hätte da eine frage und zwar was bedeutet z [mm] =\overline{z}\gdw [/mm] z [mm] \varepsilon \IR [/mm]

und könnte mir vllt jemand die frage beantworten was ein komplexwertiges polynom ist ??????  

f(z) : [mm] =\summe_{k=0}^{n} a_{k}z^{k} [/mm] = 0

was drückt diese schreibweise aus ich  würde gerne wissen was f ( z ) wobei das z für die (imaginäre) zahl stehen soll??  bedeuten soll wenn man das als summenformel schreibt bzw. definiert ???

danke im voraus eure stefy

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
komplexwertiges polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 Sa 02.09.2006
Autor: EvenSteven


> ich hätte da eine frage und zwar was bedeutet
> [mm]z=\overline{z}\gdw[/mm] z [mm]\varepsilon \IR[/mm]
>  

[mm]z=\overline{z}[/mm] ist die komplexe Konjugation, definiert wie folgt [mm] a,b \in \IR [/mm]

[mm]\overline(a+i*b)=a - i*b[/mm]

Wenn nun [mm] z=\overline{z} [/mm] gelten soll muss der Imaginärteil der komplexen Zahl verschwinden, also b=0. Was übrig bleibt ist eine reelle Zahl - was gerade deine Äquivalenz besagt.


> und könnte mir vllt jemand die frage beantworten was ein
> komplexwertiges polynom ist ??????  
>

Ein Polynom in dem statt einer reellen Variable [mm]x \in \IR[/mm] eine komplexe Variable [mm]z \in \IC[/mm] steht.

> f(z) : [mm]=\summe_{k=0}^{n} a_{k}z^{k}[/mm] = 0
>  
> was drückt diese schreibweise aus ich  würde gerne wissen
> was f ( z ) wobei das z für die (imaginäre) zahl stehen
> soll??  bedeuten soll wenn man das als summenformel
> schreibt bzw. definiert ???

Also ohne das =0 hinten:
[mm]f(z) =\summe_{k=0}^{n} a_{k}z^{k}[/mm]

Letzteres ist eine Potenzreihe in [mm] \IC [/mm] (sofern ihr die "Konvention" habt mit z eine komplexe Zahl zu bezeichnen) Die [mm]a_{k}[/mm]'s sind die Folgenglieder einer (zuvor definierten) Folge, die meist rekursiv beschrieben wird. Die Gleichheit f(z)= beschreibt den Umstand, dass eine Potenzreihe im Inneren ihres Konvergenzradius R ein Funktion beschreibt. Das bedeutet: Für ein [mm]z \in \IC[/mm] welches die Bedingung [mm]\left| z \right| \le R[/mm] (strikt kleiner! Ich finde das Zeichen nicht) erfüllt, beschreibt die Potenzreihe eine Funktion, es kommt für dieses z also genau ein konkreter Wert heraus d.h die Reihe divergiert nicht.
Das "f(z)=0" ist jetzt glaube ich selbsterklärend.

> danke im voraus eure stefy
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt

Bye

EvenSteven

Bezug
                
Bezug
komplexwertiges polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:32 Sa 02.09.2006
Autor: stefy

Letzteres ist eine Potenzreihe in  (sofern ihr die "Konvention" habt mit z eine komplexe Zahl zu bezeichnen) Die 's sind die Folgenglieder einer (zuvor definierten) Folge, die meist rekursiv beschrieben wird. Die Gleichheit f(z)= beschreibt den Umstand, dass eine Potenzreihe im Inneren ihres Konvergenzradius R ein Funktion beschreibt. Das bedeutet: Für ein  welches die Bedingung  (strikt kleiner! Ich finde das Zeichen nicht) erfüllt, beschreibt die Potenzreihe eine Funktion, es kommt für dieses z also genau ein konkreter Wert heraus d.h die Reihe divergiert nicht.
Das "f(z)=0" ist jetzt glaube ich selbsterklärend.


Also ich hätte da eine frage, und zwar um all das zu verstehen was du gerade gesagt hast also ich sollte zuerst einmal sagen das mein physikstudium erst in diesem winter anfängt also ich hab noch nicht angefangen ich bereite mich nur mit dem stoff aus dem vorkurs bisschen vor hehe falls das ein problem sein sollte entschuldige ich mich sehr bei euch allen und bei dir ganz besonders !!! also ich würde gerne wissen was ich alles wissen muss bzw. lernen muss, um all das zu verstehen was du gerade eben gesagt hast 1. mit konvergenzradius 2. potenzreihe 3. wenn ein konkreter wert für z rauskommt , heisst das doch das die reihe divergiert also nach einem wert strebt oder etwa nicht ????

ich würde mich freuen wenn ich eine antwort bekäme dankeschön stefy gruss

Bezug
                        
Bezug
komplexwertiges polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 Sa 02.09.2006
Autor: EvenSteven


>
> Also ich hätte da eine frage, und zwar um all das zu
> verstehen was du gerade gesagt hast also ich sollte zuerst
> einmal sagen das mein physikstudium erst in diesem winter
> anfängt also ich hab noch nicht angefangen ich bereite mich
> nur mit dem stoff aus dem vorkurs bisschen vor hehe falls
> das ein problem sein sollte entschuldige ich mich sehr bei
> euch allen und bei dir ganz besonders !!!

Kein Problem, ich helfe gerne.

> also ich würde
> gerne wissen was ich alles wissen muss bzw. lernen muss, um
> all das zu verstehen was du gerade eben gesagt hast

Nach einem Semester Physik-Studium (oder schon nach einem Quartal) wirst du das wohl in der Analysis-Vorlesung gehabt haben.

> 1. mit
> konvergenzradius

Analysis-Vorlesung - vermutlich kurz bevor die Reihendarstellungen von Cos und Sin eingeführt werden. Das findest du auch alles in einem normalen Analysis-I-Buch.

> 2. potenzreihe

dito

> 3. wenn ein konkreter wert
> für z rauskommt , heisst das doch das die reihe divergiert
> also nach einem wert strebt oder etwa nicht ????
>

Umgekehrt: Wenn eine Reihe konvergiert, dann hat sie einen Grenzwert.

> ich würde mich freuen wenn ich eine antwort bekäme
> dankeschön stefy gruss

Bitteschön :)
Tschüss
EvenSteven

Bezug
                
Bezug
komplexwertiges polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:36 Sa 02.09.2006
Autor: felixf

Hallo EvenSteven,

> Also ohne das =0 hinten:
>   [mm]f(z) =\summe_{k=0}^{n} a_{k}z^{k}[/mm]
>  
> Letzteres ist eine Potenzreihe in [mm]\IC[/mm] (sofern ihr die
> "Konvention" habt mit z eine komplexe Zahl zu bezeichnen)

und insbesondere ist es ein Polynom, da die Reihe abbricht.

> Die [mm]a_{k}[/mm]'s sind die Folgenglieder einer (zuvor
> definierten) Folge, die meist rekursiv beschrieben wird.
> Die Gleichheit f(z)= beschreibt den Umstand, dass eine
> Potenzreihe im Inneren ihres Konvergenzradius R ein
> Funktion beschreibt. Das bedeutet: Für ein [mm]z \in \IC[/mm]
> welches die Bedingung [mm]\left| z \right| \le R[/mm] (strikt
> kleiner! Ich finde das Zeichen nicht)

Das Zeichen gibts auf der Tastatur, normalerweise links vom Y bei deutschem QUERTZ-Layout :-)

> erfüllt, beschreibt
> die Potenzreihe eine Funktion, es kommt für dieses z also
> genau ein konkreter Wert heraus d.h die Reihe divergiert
> nicht.

Wobei hier (da Polynom) $R = [mm] \infty$ [/mm] ist.

LG Felix


Bezug
                        
Bezug
komplexwertiges polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:39 Sa 02.09.2006
Autor: stefy

hallo felix was meinst du mit, wenn die reihe abbricht. heisst das wenn eine reihe abbricht das es für z ein konkreter wert rauskommt ???  ich würde so gerne verstehen

danke

Bezug
                                
Bezug
komplexwertiges polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 Sa 02.09.2006
Autor: felixf

Hallo Steffy!

> hallo felix was meinst du mit, wenn die reihe abbricht.

Ich meine damit, das die Reihe nur endlich viele Summanden hat und somit eine endliche Summe hat. Man muss sich also keine Gedanken ueber Konvergenz oder Divergenz machen.

(Im allgemeinen sagt man bei einer Reihe, dass sie abbricht, wenn nur endlich viele der Summanden [mm] $\neq [/mm] 0$ sind.)

LG Felix


Bezug
                        
Bezug
komplexwertiges polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:46 Sa 02.09.2006
Autor: EvenSteven


> Das Zeichen gibts auf der Tastatur, normalerweise links vom
> Y bei deutschem QUERTZ-Layout :-)

Hmm ich sollte manchmal weniger weit suchen [lichtaufgegangen]

Adios

EvenSteven

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de