konjugierte Werte, Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:11 Mo 17.04.2017 | Autor: | Franzi17 |
Aufgabe | Sei A =
[mm] \begin{pmatrix}
a & b \\
\bar b & d
\end{pmatrix} [/mm]
[mm] \in [/mm] Mat2(C) mit a, d [mm] \in [/mm] R. Zeigen
Sie, dass alle Eigenwerte von A reell sind. |
Hallo,
mir war die Notation mit [mm] \bar [/mm] b bisher neu,
habe ich das richtig verstanden, dass
b in der Form x + iy
x,y [mm] \in [/mm] C
vorliegt
und
[mm] \bar [/mm] b dann x - iy ist?
dann wäre A =
[mm] \begin{pmatrix}
a & x + iy \\
x- iy & d
\end{pmatrix} [/mm]
und
[mm] PA(\Lambda) [/mm] = [mm] \lambda^2 [/mm] - [mm] ad*\Lambda [/mm] + ad - [mm] x^2 [/mm] - [mm] y^2 [/mm]
also
[mm] \Lambda_1 [/mm] = [mm] (ad+\wurzel{a^2d^2 + 4x^2 + 4y^2 - 4ad})/2
[/mm]
[mm] \Lambda_2 [/mm] = [mm] (ad-\wurzel{a^2d^2 + 4x^2 + 4y^2 - 4ad})/2
[/mm]
Und jetzt komme ich nicht mehr so recht weiter... Vielen Dank für euere Hilfe!
|
|
|
|
Hiho,
A ist hermitisch und damit selbstadjungiert.
Betrachte nun einen Eigenwert [mm] $\lambda$ [/mm] und einen dazugehörigen Eigenvektor [mm] $x\not= [/mm] 0$ und forme mal mit der Eigenschaft der Selbstadjungiertheit und den Eigenschaften des Skalarprodukts so um, dass du eine Gleichung der Form
[mm] $\lambda [/mm] <x,x> = [mm] \ldots [/mm] = [mm] \overline{\lambda} [/mm] <x,x>$ erhälst.
Was folgt aus dieser Gleichung?
Gruß
Gono
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:38 Di 18.04.2017 | Autor: | Franzi17 |
Hallo,
danke für deine Antwort!
Mein Problem ist, wir haben selbstadjungierte Matrizen noch nicht besprochen.
Ich habe es soweit verstanden, dass
A = [mm] A^H [/mm] ist
und dass diese Eigenschaft gilt:
<Ax,y> = [mm] (Ax)^H*y [/mm] = [mm] (x^H*A^H)*y [/mm] = [mm] x^H*(Ay) [/mm] = <x, Ay>
für alle x,y [mm] \in C^2
[/mm]
Sei [mm] \Lambda \in [/mm] C, Eigenwert von A, so existiert ein Eigenvektor x mit Ax = [mm] \Lambda*x, [/mm] x ungleich 0
Nun habe ich folgendes dazu gefunden:
[mm] \Lambda [/mm] = [mm] <\lambda*x, [/mm] x> = <Ax, x> = <x, Ax> = <x, [mm] \Lambda*x> [/mm] = [mm] \bar \Lambda*
[/mm]
Und ich verstehe das leider nicht. Die Umformung anhand der obigen Eigenschaft schon, aber warum nimmt man das Skalarprodukt vom Eigenvektor auf diese Art und Weise?
Ich wäre sehr froh, um eine Erklärung.
Was aus [mm] \Lambda [/mm] = [mm] \bar \Lambda [/mm] folgt ist mir wieder klar.
[mm] \Lambda [/mm] = x + iy = [mm] \bar \Lambda [/mm] = x - iy
Daraus folgt: y = 0
also: [mm] \Lambda \in [/mm] R
Danke!
|
|
|
|
|
Hiho,
> Mein Problem ist, wir haben selbstadjungierte Matrizen noch nicht besprochen.
Dann ist der andere Weg wohl der bessere
> Ich habe es soweit verstanden, dass
> A = [mm]A^H[/mm] ist
> und dass diese Eigenschaft gilt:
> <Ax,y> = [mm](Ax)^H*y[/mm] = [mm](x^H*A^H)*y[/mm] = [mm]x^H*(Ay)[/mm] = <x, Ay>
> für alle x,y [mm]\in C^2[/mm]
> Sei [mm]\Lambda \in[/mm] C, Eigenwert von A, so existiert ein
> Eigenvektor x mit Ax = [mm]\Lambda*x,[/mm] x ungleich 0
> Nun habe ich folgendes dazu gefunden:
> [mm]\Lambda[/mm] = [mm]<\lambda*x,[/mm] x> = <Ax, x> = <x, Ax> = <x,
> [mm]\Lambda*x>[/mm] = [mm]\bar \Lambda*[/mm]
> Und ich verstehe das leider nicht. Die Umformung anhand der
> obigen Eigenschaft schon, aber warum nimmt man das
> Skalarprodukt vom Eigenvektor auf diese Art und Weise?
> Ich wäre sehr froh, um eine Erklärung.
Also grundsätzlich ist das ja eine der vielen Fragen bei einem Beweis: "Wie kommt man drauf…"
Üben, üben, üben
Letztendlich ist das bei Beweisen ja oft so, dass hingeschrieben sie sehr schön und einfach aussehen, aber drauf kommen ist das schwierige.
Hier könnte man bspw. das Pferd von hinten aufzäumen. Man will doch zeigen, dass [mm] $\lambda$ [/mm] reell ist, das ist es aber genau dann, wenn [mm] $\lambda [/mm] = [mm] \overline\lambda$… [/mm] nun überlegt man lange, in welchen Ausdrücken [mm] \lambda [/mm] und [mm] \overline\lambda [/mm] vorkommen… vielleicht aber auch $Ax$ und [mm] $\overline{A}x$ [/mm] weil ja [mm] $\lambda [/mm] x = A x$ gilt und analog für [mm] $\overline\lambda$ [/mm] und nach langem überlegen kommt man dann vielleicht auf $<x,Ax>$ bzw [mm] $
Aber das ist tatsächlich nichts, was man ungeübt mal eben sieht. Aber es wird einem doch ab und an mal wieder unterkommen. Insbesondere die Idee beide Seiten einer zu zeigenden Gleichung geeignet zu erweitern ist ja nichts ungewöhnliches, das macht man ja schon bei Brüchen oder binomischen Formeln.
Dieses mal ist es halt "nur" die Erweiterung mit $<x,x>$
Daher: Üben, üben, üben,
Gruß,
Gono
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:57 Di 18.04.2017 | Autor: | leduart |
Hallo
du hast einen Fehler in deinem char- Polynom
$ [mm] \lambda^2 [/mm] $ - $ [mm] ad\cdot{}\Lambda [/mm] $ + ad - $ [mm] x^2 [/mm] $ - $ [mm] y^2 [/mm] $
richtig ist $ [mm] \lambda^2 [/mm] $ - $ [mm] (a+d)\cdot{}\Lambda [/mm] $ + ad - $ [mm] x^2 [/mm] $ - $ [mm] y^2 [/mm] $
damit bekommst du ein reelles Ergebnis.
Gruß ledum
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:17 Mi 19.04.2017 | Autor: | Franzi17 |
Danke! :)
|
|
|
|