www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - konvergenz
konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:58 Mi 09.02.2005
Autor: beta83

Hi Leute,

Ich übe grade auf meine Matheprüfung und versuche eine Konvergenzaufgabe zu berechnen, bei der ich bis jetzt erfolgslos geblieben bin. Ich hab mehrere Kriterien angewandt die jedoch nicht zur lösung führten. habt ihr eine Idee?
Ich würde mich sehr freuen wenn mir jmd. weiterhelfen könnte

genaue aufgabenstellung: Man untersucht folgende Reihe auf Konvergenz

[Dateianhang nicht öffentlich]


Gruß beta
ich habe die Frage in kein anderes Forum gestellt

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
konvergenz: Divergent?
Status: (Antwort) fertig Status 
Datum: 17:41 Mi 09.02.2005
Autor: Max

Kann es evtl. sein, dass die Reihe einfach divergiert? Hast du mal versucht das nachzuweisen?

Gruß Brackhaus

Bezug
                
Bezug
konvergenz: -
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:56 Mi 09.02.2005
Autor: Max

Fehler meinerseits, ich hatte nicht das hoch $n$ übersehen, sondern die [mm] $\frac{1}{2}$ [/mm] ;-) Irgendwie wollte ich wohl $e$ sehen *g*
Bezug
                        
Bezug
konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:18 Mi 09.02.2005
Autor: Marcel

Hi Max!

Ich habe nun das $e$ sogar noch gefunden:
https://matheraum.de/read?i=43443 ;-)

Viele Grüße,
Marcel

Bezug
        
Bezug
konvergenz: konvergent!
Status: (Antwort) fertig Status 
Datum: 17:55 Mi 09.02.2005
Autor: Marcel

Hallo Beta83!

> Hi Leute,
>  
> Ich übe grade auf meine Matheprüfung und versuche eine
> Konvergenzaufgabe zu berechnen, bei der ich bis jetzt
> erfolgslos geblieben bin. Ich hab mehrere Kriterien
> angewandt die jedoch nicht zur lösung führten. habt ihr
> eine Idee?
>  Ich würde mich sehr freuen wenn mir jmd. weiterhelfen
> könnte
>  
> genaue aufgabenstellung: Man untersucht folgende Reihe auf
> Konvergenz
>  
> [Dateianhang nicht öffentlich]
>  

Wendest du das []Wurzelkriterium auf deine Reihe:
[mm]\sum_{n=1}^\infty\left(\frac{1}{2}+\frac{1}{n}\right)^n[/mm]
an, so folgt wegen:
[m]\limsup_{n \to \infty}\wurzel[n]{\left|\frac{1}{2}+\frac{1}{n}\right|^n}=\limsup_{n \to \infty}\left(\frac{1}{2}+\frac{1}{n}\right)=\frac{1}{2}<1[/m]
die Konvergenz deiner Reihe!

PS: Ich glaube, Max hat nur übersehen, dass da [mm]\left(\frac{1}{2}+\frac{1}{n}\right)^{\red{n}}[/mm] steht. :-)

Viele Grüße,
Marcel

Bezug
                
Bezug
konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:51 Mi 09.02.2005
Autor: beta83

danke marcel für deinen vorschlag.
ich hab zuerst mit dem quotientenkriterium angefangen und nix rechtes rausbekommen. dan hab ich das wurzelkriterium angewandt und mich wahrscheinlich beim vereinfachen verrechnet.
danke für eure mühe.

Bezug
                        
Bezug
konvergenz: Rechng. Quotientenkriterium
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:16 Mi 09.02.2005
Autor: Marcel

Hallo Beta83!

> danke marcel für deinen vorschlag.
>  ich hab zuerst mit dem quotientenkriterium angefangen und
> nix rechtes rausbekommen. dan hab ich das wurzelkriterium
> angewandt und mich wahrscheinlich beim vereinfachen
> verrechnet.
>  danke für eure mühe.

Ich rechne auch gerne mal schnell das Quotientenkriterium für dich nach :-):
[mm]\frac{\left(\frac{1}{2}+\frac{1}{n+1}\right)^{n+1}}{\left(\frac{1}{2}+\frac{1}{n}\right)^{n}} =\frac{\left(\frac{1}{2}+\frac{1}{n+1}\right)^{n}}{\left(\frac{1}{2}+\frac{1}{n}\right)^{n}}*\left(\frac{1}{2}+\frac{1}{n+1}\right) =\left(\frac{\left(\frac{n+1+2}{2(n+1)}\right)}{\left(\frac{n+2}{2n}\right)}\right)^n*\left(\frac{1}{2}+\frac{1}{n+1}\right) =\left(\frac{(n+2)+1}{n+2}*\frac{2(n+1)-2}{2(n+1)}\right)^n\left(\frac{1}{2}+\frac{1}{n+1}\right)[/mm]  
[mm]=\underbrace{\left(1+\frac{1}{n+2}\right)^n}_{\longrightarrow e\;(n \to \infty)}*\underbrace{\left(1-\frac{1}{n+1}\right)^n}_{\longrightarrow e^{-1}\;(n \to \infty)}*\underbrace{\left(\frac{1}{2}+\frac{1}{n+1}\right)}_{\to \frac{1}{2}\;(n \to \infty)} \stackrel{n \to \infty}{\longrightarrow} e*e^{-1}*\frac{1}{2}=\frac{1}{2}<1[/mm].
Damit hätten wir dann die Konvergenz der Reihe (nochmal) über das Quotientenkriterium nachgerechnet :-).

Hierbei gilt z.B.:
[mm]\left(1+\frac{1}{n+2}\right)^n \stackrel{n \to \infty}{\longrightarrow} e[/mm], da:
[mm]\left(1+\frac{1}{n+2}\right)^n =\frac{\left(1+\frac{1}{n+2}\right)^{n+2} }{\left(1+\frac{1}{n+2}\right)^{2}} =\frac{\underbrace{\left(1+\frac{1}{n+2}\right)^{n+2}}_{\to e \;(n \to \infty)} }{\underbrace{\left(1+\frac{1}{n+2}\right)}_{\to 1\;(n \to \infty)}*\underbrace{\left(1+\frac{1}{n+2}\right)}_{\to 1\;(n \to \infty)}}\stackrel{n \to \infty}{\longrightarrow} \frac{e}{1*1}=e[/mm].

Das nun auch tatsächlich [mm]\left(1-\frac{1}{n+1}\right)^n \stackrel{n \to \infty}{\longrightarrow}e^{-1}[/mm] gilt, das kannst du dir ja mal selbst überlegen (notfalls frage nach :-)).
Einen Tipp dazu findest du innerhalb dieses Artikels: https://matheraum.de/read?i=30818&v=s
(Lese dir durch, was ich dort zu der Folge [mm] \left(\left(1-\frac{1}{n}\right)^n\right)_{n \in \IN}[/mm] sage!)

PS: Mal abgesehen davon, dass du nun auch die Rechnung zum Quotientenkriterium gesehen hast:
Max hatte Recht :-). Man kann in der Aufgabe sogar die eulersche Zahl $e$ sehen. Cool :-).

Viele Grüße,
Marcel

Bezug
                                
Bezug
konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:54 Do 10.02.2005
Autor: beta83

ich danke euch beiden nochmals. Ich schau mir des mit der eulerschen Zahl nochmal an. Solche Sachen lerne ich auswendig und hinterfrage sie eigentlich nicht^^

Bezug
        
Bezug
konvergenz: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 13:22 Do 10.02.2005
Autor: baddi

Irgendwo weiter unten habe ich glaube ich ein Fehler... kann mir bitte jemand sagen wo?
Danke.

Ich will mal noch eine andere Lösung bieten.
es scheint (fast offensichtlich, wil ich sagen), die geometrische Reieh zu sein.

$ [mm] \summe_{i=1}^{n}a_i^n [/mm] $
bei dir ist es
$ [mm] \summe_{i=1}^{n}(1/2 [/mm] + [mm] 1/n)^n [/mm] $
die Konvergiert, wenn
$|1/2 + 1/n | < 1$
Naja das ist ja offensichtlich der Fall ab einem großen n.
Bei Konvergenzkriterien darf man ja immer endlich viele Glieder vernachlässigen (natürlich nicht beim kongreten Grenzwert).

$|1/2 + 1/n | < |1/2 + 1/2 | = 1$ für alle n > 2

Also konvergiert Sie.
Und zwar (stimmt doch oder ?!) gegen
$1/(1-a)$ bzw. $1/(1-(1/2 + 1/n))$
bzw. 2 oder ?

Irgendwo habe ich glaube ich ein Fehler... Aber wo ?

Bezug
                
Bezug
konvergenz: Keine geometrische Reihe!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:39 Do 10.02.2005
Autor: Loddar

Hallo baddi!

Bei dieser Aufgabe handelt es definitiv nicht um eine geometrische Reihe bzw. bei [mm] $a_n [/mm] \ = \ [mm] \left( \bruch{1}{2} + \bruch{1}{n} \right)^n$ [/mm] nicht um eine geometrische Folge.

Eine geometrische Folge ist derart definiert, daß zwei aufeinanderfolgende Folgenglieder immer denselben Quotienten ergeben:
[mm] $\bruch{a_{n+1}}{a_n} [/mm] \ = \ q \ = \ const.$


Da unsere Folgenvariable $n$ aber sowohl im Exponenten als auch in der Basis auftritt, wird diese Eigenschaft der Quotientenkonstanz nicht eingehalten.

Demnach "hinkt" auch Deine Grenzwertberechnung.


Loddar


Bezug
                        
Bezug
konvergenz: Aaaaaber....
Status: (Frage) beantwortet Status 
Datum: 15:16 Do 10.02.2005
Autor: baddi

Hallo Loddar :)

Vielen Dank, stimmt ich erinnere mich das die geometrische Folge so definiert war... aaaber gut...
hmm... da fällt mir ein prima Abschätzung ein... ich bin mal gespannt ob ihr damit einverstanden sind :)

[mm]a_n \ = \ \left( \bruch{1}{2} + \bruch{1}{3} \right)^n[/mm]
ist Majorante von
[mm]a_n \ = \ \left( \bruch{1}{2} + \bruch{1}{n} \right)^n[/mm]
für (fast) alle n. Also bis auf endlich viele am Anfang.
So lässt sich dann doch mit der geometrschen Reihe mit weniger Rechenaufwand die Konvergenz nachweisen :)

Weil hier [mm] $\bruch{a_{n+1}}{a_{n}}$ [/mm] z.B. $< 0.9 $

Puh... :)) habe ich doch noch was hingekriegt ;)

Sebastian

Bezug
                                
Bezug
konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Do 10.02.2005
Autor: Marcel

Hallo Sebastian!

> Hallo Loddar :)
>  
> Vielen Dank, stimmt ich erinnere mich das die geometrische
> Folge so definiert war... aaaber gut...
> hmm... da fällt mir ein prima Abschätzung ein... ich bin
> mal gespannt ob ihr damit einverstanden sind :)
>  
> [mm]a_n \ = \ \left( \bruch{1}{2} + \bruch{1}{3} \right)^n[/mm]
>
> ist Majorante von
> [mm]a_n \ = \ \left( \bruch{1}{2} + \bruch{1}{n} \right)^n[/mm]
>
> für (fast) alle n. Also bis auf endlich viele am Anfang.
>  So lässt sich dann doch mit der geometrschen Reihe mit
> weniger Rechenaufwand die Konvergenz nachweisen :)

Ja (du hast das etwas ungenau ausgedrückt, aber ich verstehe, was du meinst: Du willst ausnutzen, dass [m]\sum_{n=3}^\infty\left(\frac{1}{2}+\frac{1}{n}\right)^n\le\sum_{n=3}^\infty\left(\frac{1}{2}+\frac{1}{3}\right)^n[/m] und dann das Majorantenkriterium zuhilfe nehmen).
Das geht auch :-).
Allerdings geht es meines Erachtens nach am schnellsten mit dem Wurzelkriterium, siehe hier.
Und wenn du dich nochmal an die Beweise zum Quotienten- bzw. Wurzelkriterium erinnerst, erkennst du hoffentlich auch den Zusammenhang zur geometrischen Reihe ;-). Von daher ist es auch nicht besonders verwunderlich, dass du so eine Abschätzung angeben kannst ;-).  

> Weil hier [mm]\bruch{a_{n+1}}{a_{n}}[/mm] z.B. [mm]< 0.9[/mm]

Hui, das ist verwirrend [verwirrt] ;-), weil du oben zwei verschiedene Folgen mit [mm] $(a_n)$ [/mm] bezeichnest ;-). Am besten machen wir es mal so:
[mm]a_n \ = \ \left( \bruch{1}{2} + \bruch{1}{n} \right)^n[/mm]
[mm]b_n \ = \ \left( \bruch{1}{2} + \bruch{1}{3} \right)^n[/mm]

Und was du nun meinst, ist:
[mm]\frac{b_{n+1}}{b_n}=\frac{\left(\frac{5}{6}\right)^{n+1}}{\left(\frac{5}{6}\right)^n}=\frac{5}{6}=\frac{\frac{25}{3}}{10}<\frac{9}{10}<1[/mm]  
und daher konvergiert [m]\sum_{n=3}^\infty\left(\frac{1}{2}+\frac{1}{3}\right)^n=\sum_{n=3}^\infty\left(\frac{5}{6}\right)^n[/m] nach dem Quotientenkriterium. Das ist auch richtig, aber:
Die Berechnung von [mm] $\frac{b_{n+1}}{b_n}$ [/mm] ist aber gar nicht nötig, da ja:
[m]\sum_{n=0}^\infty\left(\frac{5}{6}\right)^n[/m] eine []geometrische Reihe ist, die wegen [mm] $\frac{5}{6}<1$ [/mm] konvergiert.

> Puh... :)) habe ich doch noch was hingekriegt ;)

:-)
  
Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de