www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - konvergenz rekursiver Folge
konvergenz rekursiver Folge < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergenz rekursiver Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:56 So 20.08.2006
Autor: pusteblume86

hallo ihr, ich hoffe ihr könnt mir helfen..Ich lerne gerade für meine Zwischenprüfung...Und stehe grad mit Analysis auf Kriegsfuß.

Ich habe folgende Folge:
[mm] a_1 [/mm] = 2
a_(j+1)=

[mm] \bruch{a_j}{2} +\bruch{1}{a_j} [/mm]

ZU zeigen ist, das [mm] \limes_{j \to \infty}x_j [/mm] = [mm] \wurzel{2} [/mm]

Zuerst sollen wir zeigen, dass die Folge [mm] a_j [/mm] nach oben durch [mm] \wurzel{2} [/mm]  beschränkt ist, aber da habe ich schon keinen Ansatz wie ich es zeigen soll. Kann mir jemand zu dieser Aufgabe einen Tip geben?

Vielen dank im Voraus.

Sandra


        
Bezug
konvergenz rekursiver Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 So 20.08.2006
Autor: Leopold_Gast

Hierbei handelt es sich um das []Heron-Verfahren zur Berechnung von [mm]\sqrt{2}[/mm].

In der Aufgabenstellung ist wohl ein Fehler. Die Folge ist nicht nach oben, sondern nach unten durch [mm]\sqrt{2}[/mm] beschränkt. Alle Folgeglieder sind aufgrund der Rekursionsvorschrift positiv. Daher genügt es zu zeigen, daß

[mm]{a_{j+1}}^{ 2} \geq 2[/mm] für [mm]j \geq 1[/mm]

gilt ([mm]a_1 = 2 \geq \sqrt{2}[/mm] ist sowieso klar). Setze dazu für [mm]a_{j+1}[/mm] die Rekursionsbeziehung ein und forme die Ungleichung äquivalent um. Man kann sie auf die Gestalt

[mm]\left( \ldots \right)^2 \geq 0[/mm]

bringen (binomische Formel). Das ist aber sicher richtig, da Quadrate niemals negativ sind. Und wenn alle Umformungen Äquivalenzumformungen waren (wichtig! überzeuge dich davon!), ist damit auch die erste Ungleichung bewiesen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de