konvergenz von reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:41 Do 27.04.2006 | Autor: | bobby |
Hallo!
Ich hab ein Problem bei dieser Aufgabe, also den ersten Teil hab ich schon gelöst, mir fehlt also nur der zweite und dazu die zündende Idee...
Ich hab ne Folge [mm] c_{n} [/mm] komplexer Zahlen gegeben mit n [mm] \in \IN [/mm] , die Reihe [mm] \summe_{n=0}^{\infty} c_{n} [/mm] dazu ist absolut konvergent. Nun sollte ich zeigen, dass die Reihe in [mm] \IC [/mm] konvergiert (das hab ich schon) und dass [mm] \summe_{n=0}^{\infty} c_{k} \le \summe_{n=0}^{\infty} c_{k} [/mm] (dabei ist die erste Summe vor [mm] \le [/mm] komplett im Betrag geschrieben und bei der anderen nur das [mm] c_{k}) [/mm] (bei dem Teil bräuchte ich mal Hilfe).
Danke!!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:04 So 30.04.2006 | Autor: | felixf |
Hallo!
> Ich hab ein Problem bei dieser Aufgabe, also den ersten
> Teil hab ich schon gelöst, mir fehlt also nur der zweite
> und dazu die zündende Idee...
>
> Ich hab ne Folge [mm]c_{n}[/mm] komplexer Zahlen gegeben mit n [mm]\in \IN[/mm]
> , die Reihe [mm]\summe_{n=0}^{\infty} c_{n}[/mm] dazu ist absolut
> konvergent. Nun sollte ich zeigen, dass die Reihe in [mm]\IC[/mm]
> konvergiert (das hab ich schon) und dass
> [mm]\left|\summe_{n=0}^{\infty} c_{k}\right| \le \summe_{n=0}^{\infty} |c_{k}|[/mm]
> (dabei ist die erste Summe vor [mm]\le[/mm] komplett im Betrag
> geschrieben und bei der anderen nur das [mm]c_{k})[/mm] (bei dem
> Teil bräuchte ich mal Hilfe).
Benutze folgendes:
- Wenn [mm] $(a_n), (b_n)$ [/mm] konvergente reelle Folgen sind mit [mm] $a_n \le b_n$, [/mm] dann gilt [mm] $\lim a_n \le \lim b_n$.
[/mm]
- Schreibe [mm] $\sum_{k=0}^\infty [/mm] ...$ als [mm] $\lim_{n\to\infty} \sum_{k=0}^n [/mm] ...$
- Benutze, dass $| [mm] \cdot [/mm] |$ stetig ist, also [mm] $\lim_n |a_n| [/mm] = [mm] |\lim_n a_n|$ [/mm] ist fuer konvergente Folgen [mm] $(a_n)$.
[/mm]
- Und jetzt benutz die Dreiecksungleichung $|a + b| [mm] \le [/mm] |a| + |b|$.
LG Felix
|
|
|
|