www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - konvergenzradius
konvergenzradius < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:33 So 19.09.2004
Autor: kaffee

hallo zusammen,

ich bins wiedermal...
bin grad etwas verwirrt durch folgende aufgabe:
bestimme den konvergenzradius der reihe [mm]\sum_{n=1}^{\infty} (-1)^n \bruch{(x-2)^n}{n^2} [/mm]
Im normalfall dh [mm]\sum_{n=1}^{\infty} a_n x^n[/mm] rechnet man ja [mm] \bruch{1}{\lim_{n \to \infty} \wurzel[n]{a_n} [/mm]
man lässt also das [mm]x^n[/mm] weg bei der berechnung.
und nun meine frage darf ich hier analog [mm] (x-2)^n [/mm] weglassen und für den konvergenzradius [mm] \bruch{1}{\lim_{n \to \infty} \wurzel[n]{(-1)^n \bruch{1}{n^2}}[/mm] mit rechnen?
danke & gruss, sarah

        
Bezug
konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 So 19.09.2004
Autor: Gnometech

Hallo!

Also, die Antwort ist: ja, Du darfst so rechnen. Eine Potenzreihe hat immer einen Entwicklungspunkt, also einen Punkt, um den sie entwickelt ist. Das ist ein Punkt, an dem sie auf jeden Fall konvergiert. Im "normalen" Fall $ [mm] \sum a_n x^n$ [/mm] ist dieser Punkt gleich 0 (und wenn man für $x$ 0 einsetzt, kommt einfach [mm] $a_0$ [/mm] raus).

Man kann die Theorie aber auf einen beliebigen Entwicklungspunkt $a$ und eine Potenzreihe der Form [mm] $\sum a_n [/mm] (x - [mm] a)^n$ [/mm] erweitern. Das verschiebt die ganze Geschichte nur vom Nullpunkt in den Punkt $a$, d.h. also im Punkt $a$ konvergiert es auf jeden Fall (gegen [mm] $a_0$ [/mm] wie oben) und der Konvergenzradius ist der Radius des Kreises mit Mittelpunkt $a$ - wenn also z.B. der Konvergenzradius gleich $r$ ist, dann bedeutet es, dass die Reihe für alle Punkte $x$ konvergiert mit $|x - a| < r$, also für alle Punkte, die in einem offenen Kreis um $a$ mit Radius $r$ liegen.

Und ebenso gilt für alle $x$ mit $|x - a| > r$, dass die Reihe divergiert. Und auf dem Rand ist wie üblich die große Ungewißheit.

Lange Rede kurzer Sinn: die Theorie funktioniert wie üblich, stell Dir die Ersetzung von $x$ durch $(x - 2)$ einfach als eine Verschiebung der Reihe um 2 vor.

Lars

Bezug
                
Bezug
konvergenzradius: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:47 So 19.09.2004
Autor: kaffee

danke lars, wieso bin ich auf die erklärung nicht selbst gekommen?
wie dem auch sei, jetzt kann ich mindestens ohne bedenken rechnen!!
grüsse, sarah

Bezug
        
Bezug
konvergenzradius: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:09 Mo 20.09.2004
Autor: Marcel

Hallo kaffee,

es wurde ja schon alles gesagt, was gesagt werden musste. :-)
Ich möchte dir nur noch einmal einen Link anbieten, wo du diesbezüglich einige Informationen findest:
[]http://www.mathematik.uni-trier.de/~mueller/
[mm] $\rightarrow$ [/mm] Skript zur Analysis [mm] $\rightarrow$ [/mm] Kapitel 16

PS: Das Zeichen [mm] $\overline{lim}$ [/mm] steht in dem Skript für den $limsup$, siehe auch Definition 5.18 im obigen Skript auf Seite 44 (skriptinterne Zählung oben rechts)!

Viele Grüße
Marcel

Bezug
        
Bezug
konvergenzradius: Potenzreihe!?
Status: (Frage) beantwortet Status 
Datum: 16:43 Fr 07.01.2005
Autor: chris2000


> Im normalfall dh [mm]\sum_{n=1}^{\infty} a_n x^n[/mm] rechnet man ja
> [mm]\bruch{1}{\lim_{n \to \infty} \wurzel[n]{a_n}[/mm]
> man lässt also das [mm]x^n[/mm] weg bei der berechnung.

Das Weglassen, bzw. gleich 1 setzen, darf man doch aber nur, wenn es - wie hier - eine Potenzreihe ist, oder?

Gruß,
Christian

Bezug
                
Bezug
konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Fr 07.01.2005
Autor: moudi

Man setzt nicht x=1, sondern man untersucht, für welche reellen (oder komplexen) Zahlen x die Reihe konvergiert. Dies hängt offenbar nur von den "Koeffizienten" [mm] a_n [/mm] ab. Deshalb dürfen für die Berechnung des Konvergenzradius nur die [mm] a_n [/mm] vorkommen.

mfG Moudi


Bezug
                        
Bezug
konvergenzradius: ok
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:40 Fr 07.01.2005
Autor: chris2000


> Man setzt nicht x=1,

Ja, das war quatsch, sorry.

> sondern man untersucht, für welche
> reellen (oder komplexen) Zahlen x die Reihe konvergiert.
> Dies hängt offenbar nur von den "Koeffizienten" [mm]a_n[/mm] ab.
> Deshalb dürfen für die Berechnung des Konvergenzradius nur
> die [mm]a_n[/mm] vorkommen.

Ok, habe inzwischen die Herleitung dieser Formel gefunden; muss ich mir nochmal genauer anschauen, ist damit dann aber hoffentlich klar.

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de