www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - konvexe Funktionen
konvexe Funktionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvexe Funktionen: Aufgabenkontrolle
Status: (Frage) beantwortet Status 
Datum: 23:08 Fr 24.06.2005
Autor: Toyo

Hallo, ich hab hier zwei Aufgaben:

1. im K [mm] \subset \IR^{2} [/mm] ist das abgeschlossene Einheitsquadrat gegeben. mit den Eckpunkten (0,0),(1,0),(0,1),(1,1). Zeigen Sie, dass (1,1) Extrempunkt von K ist.

Hab mir überlegt, das es zwei möglichkeiten gibt um dies zu zeigen.
Eine, ich stelle die Menge als Zulässigenpolyeder eines Linearen Optimierungsprogramms vor und maximiere x1+x2 ... dann kommt (1,1) als Optimum raus.

Der andere Weg müsste doch sein, dass ich zeige, dass (1,1) nicht als Linearkombination anderer Punkte aus K darstellbar ist. Aber wie mache ich dass? Hab superlange rumgerechnet komm aber auf nix richtiges.
Hat hier einer ne Hilfestellung für mich.

Die 2te Aufgabe ist folgende:
Es seien n,m [mm] \in \IN [/mm] und [mm] A \in \IR^{m \times n } [/mm] . Weiterhin sei [mm] f : \IR^{n} \to \IR [/mm] eine konvexe Funktion und [mm] g : \IR^{m} \to \IR [/mm] definiert als [mm] g(y) = f(Ay) [/mm] . Zeigen Sie, dass auch g konvex ist.

Mit dieser Aufgabe komme ich leider gar nicht klar. Wie kann ich dies zeigen? Bitte gebt mir zum Ansatz einen tipp.

Vielen Dank für eure Hilfe.

Gruß Toyo

        
Bezug
konvexe Funktionen: Lösung 2. Aufgabe
Status: (Antwort) fertig Status 
Datum: 23:09 Sa 25.06.2005
Autor: logarithmus

Hallo,

hier ist ein Ansatz für die 2. Aufgabe:

Es seien n,m $ [mm] \in \IN [/mm] $ und $ A [mm] \in \IR^{m \times n } [/mm] $ . Weiterhin sei $ f : [mm] \IR^{n} \to \IR [/mm] $ eine konvexe Funktion und $ g : [mm] \IR^{m} \to \IR [/mm] $ definiert als $ g(y) = f(Ay) $ . Zeigen Sie, dass auch g konvex ist.

Def.: f :  [mm] \IR^{n} \to \IR [/mm] heisst konvex, falls [mm] \forall [/mm] x,y [mm] \in \IR^n [/mm] , t [mm] \in [/mm] [0,1] gilt:
f(ty+(1-t)x) [mm] \le [/mm] tf(y) + (1-t)f(x).

Ausserdem brauchen wir die Linearität der Matrix A: A(ty+(1-t)x) = tA(y) + (1-t)A(x).

Setze die Def. der Konvexität für g ein:
g(ty+(1-t)x) = f(A(ty+(1-t)x))
               = f(tA(y) + (1-t)A(x)) (wegen Linearität von A)
                [mm] \le [/mm] t [mm] \underbrace{f(A(y))}_{=g(y)} [/mm] + (1-t) [mm] \underbrace{f(A(x))}_{=g(x)} [/mm] (Wegen Konvexität von f) ...

gruss,
logarithmus

Bezug
        
Bezug
konvexe Funktionen: echt konvexe Linearkombination
Status: (Antwort) fertig Status 
Datum: 01:53 So 26.06.2005
Autor: Marc

Hallo Toyo,

> Hallo, ich hab hier zwei Aufgaben:
>  
> 1. im K [mm]\subset \IR^{2}[/mm] ist das abgeschlossene
> Einheitsquadrat gegeben. mit den Eckpunkten
> (0,0),(1,0),(0,1),(1,1). Zeigen Sie, dass (1,1) Extrempunkt
> von K ist.
>  
> Hab mir überlegt, das es zwei möglichkeiten gibt um dies zu
> zeigen.
>  Eine, ich stelle die Menge als Zulässigenpolyeder eines
> Linearen Optimierungsprogramms vor und maximiere x1+x2 ...
> dann kommt (1,1) als Optimum raus.
>  
> Der andere Weg müsste doch sein, dass ich zeige, dass (1,1)
> nicht als Linearkombination anderer Punkte aus K
> darstellbar ist. Aber wie mache ich dass? Hab superlange
> rumgerechnet komm aber auf nix richtiges.
>  Hat hier einer ne Hilfestellung für mich.

Genau, (1,1) darf keine echte konvexe Linearkombination sein (eine echte konvexe Linearkombination ist eine mit echt positiven Koeffizienten).

Mir fällt dazu nur folgendes ein:

Angenommen, es gäbe zwei Punkte x und y innerhalb des Einheitsquadrates mit [mm] $(1,1)=\lambda*x+(1-\lambda)*y$ [/mm] und [mm] $0<\lambda,1-\lambda<1$. [/mm]

Dann muß für [mm] $x=(x_1,x_2)$ [/mm] gelten:

[mm] $0\le x_1\le1$ [/mm]

[mm] $\Rightarrow$ $\lambda*x_1\le\lambda$, [/mm] da [mm] $0<\lambda<1$ [/mm]

Für [mm] $x_1<1$ [/mm] gilt sogar:

[mm] $\lambda*x_1<\lambda$ [/mm]

Nun schauen wir uns die konvexe Linearkombination an, dafür reicht schon die erste Komponentengleichung:

Falls [mm] $x_1=1$ [/mm] kann man den Widerspruch leicht herbeiführen.

Falls [mm] $x_1<1$ [/mm] haben wir:
[mm] $1=\lambda*x_1+(1-\lambda)*y_1$ [/mm]

[mm] $\gdw$ $1<\lambda+(1-\lambda)*y_1$ [/mm]

[mm] $\gdw$ $1-\lambda<(1-\lambda)*y_1$ [/mm]

[mm] $\gdw$ $\bruch{1-\lambda}{1-\lambda}
[mm] $\gdw$ $1
Widerspruch (der Punkt y liegt ausserhalb des Einheitsquadaders).

Viele Grüße,
Marc





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de