www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - konvexe funktion?
konvexe funktion? < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvexe funktion?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 Mi 04.01.2006
Autor: tom.bg

Aufgabe
Sei f : [a, b] [mm] \to [/mm] R eine konvexe Funktion, und seien x1, . . . , xn  [mm] \in [/mm] [a, b]. Zeigen Sie:
Für alle [mm] \lambda_{1}, [/mm] . . . ,  [mm] \lambda_{n} [/mm] > 0 mit [mm] \summe_{i=1}^{n} \lambda_{i} [/mm] =1 gilt
[mm] f(\lambda_{1}*x_{1} +...+\lambda_{n}*x_{n}) \le \lambda_{1}*f(x_{1}) [/mm] +...+ [mm] \lambda_{n}*f(x_{n}) [/mm]

hallo
ich habe nicht das geringste ahnung was "konvexe Funktion" ist??
ich habe versuch mit ableitung aber ist nichts daraus gekommen - habe ich was falsch genacht oder muss man dass anders machen
ich bin dankbar für jede hilfe

        
Bezug
konvexe funktion?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Mi 04.01.2006
Autor: piet.t

Hallo,

ich weiss nicht, ob ihr eine andere Definition von "konvex" habt, aber im allgemeinen nennt man eine Funktion konvex auf einem Intervall I, wenn für alle x,y [mm] \in [/mm] I gilt:
[mm]f(tx+(1-t)y) <= t f(x) + (1-t) f(y) \quad \forall t\in ]0;1[ [/mm]

....und mit der Definition sollte Deine Aufgabe durch vollständige Induktion gut zu lösen sein.


Gruß

piet



Bezug
        
Bezug
konvexe funktion?: Antwort
Status: (Antwort) fertig Status 
Datum: 00:00 Do 05.01.2006
Autor: Timowob

Hallo Tom,

ich meine, konvexe Funktionen sind nach oben oben gekrümmte Funktionen. Z. B. e^(x) ist konvex.

Viele Grüße

Timo

Bezug
                
Bezug
konvexe funktion?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:53 Di 10.01.2006
Autor: kuminitu

Hallo,

kann ir zufällig jemand zeigen wie ich sowas mit vollständiger induktion mache?
irgendwie finde ich für solche aufgaben manchmal einfach keine(n)
Lösung(sansatz).
MFG


Bezug
                        
Bezug
konvexe funktion?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Di 10.01.2006
Autor: mushroom

Hallo,

ich habe die Aufgabe wie folgt gelöst, kann aber nicht mit Sicherheit sagen, ob es so korrekt ist.

Induktionsanfang: [mm] f(\lambda_1x_1) \le \lambda_1f(x_1) [/mm]

Induktionsschritt:
Seien [mm] \lambda_{n+1} [/mm] = [mm] 1-\sum_{i=1}^n \lambda_i, \quad \lambda [/mm] := [mm] \lambda_1+\ldots+\lambda_n, \quad x:=\frac{\lambda_1}{\lambda}x_1 [/mm] + [mm] \ldots [/mm] + [mm] \frac{\lambda_n}{\lambda}x_n [/mm]

[mm] f(\sum_{i=1}^n \lambda_ix_i [/mm] + [mm] \lambda_{n+1}x_{n+1}) [/mm]
[mm] \quad [/mm] = [mm] f(\sum_{i=1}^n \lambda_ix_i [/mm] + [mm] (1-\sum_{i=1}^n \lambda_i)x_{n+1})\\ [/mm]
[mm] \quad [/mm] = [mm] f(\lambda [/mm] x + [mm] (1-\lambda)x_{n+1})\\ [/mm]
[mm] \quad \le \lambda [/mm] f(x) + [mm] (1-\lambda) f(x_{n+1})\\ [/mm]
[mm] \quad [/mm] = [mm] (\lambda_1 [/mm] f(x) + [mm] \ldots [/mm] + [mm] \lambda_n [/mm] f(x) + [mm] \lambda_{n+1}f(x_{n+1})\\ [/mm]
[mm] \quad [/mm] = [mm] \lambda_1 f(\frac{\lambda_1}{\lambda}x_1 [/mm] + [mm] \ldots [/mm] + [mm] \frac{\lambda_n}{\lambda}x_n) [/mm] + [mm] \ldots [/mm] + [mm] \lambda_n f(\frac{\lambda_1}{\lambda}x_1 [/mm] + [mm] \ldots [/mm] + [mm] \frac{\lambda_n}{\lambda}x_n) [/mm] + [mm] \lambda_{n+1}f(x_{n+1})\\ [/mm]
[mm] \quad [/mm] = [mm] \lambda_1 f(x_1) [/mm] + [mm] \ldots [/mm] + [mm] \lambda_n f(x_n) [/mm] + [mm] \lambda_{n+1} f(x_{n+1}) [/mm]

Bei der ersten Ungleichung habe ich die Definition der konvexen Funktion angewendet.
Bin mir beim letzten Schritt (habe Induktionsvoraussetzung angewendet) nicht sicher, ob das so klappt.

Gruß Markus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de