www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - kreis im 3d raum
kreis im 3d raum < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kreis im 3d raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:20 Fr 12.01.2007
Autor: kons

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi Kann mir jemand erklären wie ich im drei-dimensionalen raum die koordinaten von punkten auf einer kreisbahn herausbekomme. dabei kenne ich den mittelpunkt des kreises, den radius, den winkel des kreises im raum, wobei bei mir 0 grad den kreis parrallel zur y-achse darstellt, und den winkel zwischen der x-achse und der geraden die den punkt auf der geraden schneidet.
vielen dank
kons

        
Bezug
kreis im 3d raum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Fr 12.01.2007
Autor: MeeMa


> Hi Kann mir jemand erklären wie ich im drei-dimensionalen
> raum die koordinaten von punkten auf einer kreisbahn
> herausbekomme. dabei kenne ich den mittelpunkt des kreises,
> den radius, den winkel des kreises im raum, wobei bei mir 0
> grad den kreis parrallel zur y-achse darstellt, und den
> winkel zwischen der x-achse und der geraden die den punkt
> auf der geraden schneidet.
> vielen dank
> kons  

Also eine Kreisgleichung im Raum lautet:

[mm] (x-x_M)^2 + (y-y_M)^2 + (z-z_M)^2 + R^2 = 0 [/mm]

wobei: [mm] $x_M \, y_M \, z_M$ [/mm] die Koordinaten des Mittelpunkt und R = Radius des Kreises ist


Bezug
                
Bezug
kreis im 3d raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:54 Sa 03.02.2007
Autor: slain

@MeeMa: Das ist keine Kreisgleichung, sondern eine Kugelgleichung. Mit der von dir genannten Gleichung kann man alle Punkte auf einer Kugel bestimmen.
@kons
Um die Punkte auf einen Kreis im Raum mit Winkelangabe zu bestimmen, brauchst du diese Gleichung:
[mm] \vec{P}=\vec{M}+cos(\alpha)*\vec{s}+sin(\alpha)*\vec{t} [/mm]

[mm] \vec{P}=Ortsvektor [/mm] des Punktes
[mm] \vec{M}=Ortsvektor [/mm] des Mittelpunktes
[mm] \vec{s}=1. [/mm] Spannvektor des Kreises
[mm] \vec{t}= [/mm] 2. Spannvektor des Kreises
Vektor s und Vektor t sollten für einen Kreis dieselbe Länge haben und senkrecht zueinander stehen. Bei unterschiedlichen Winkel dieser beiden Spannvektoren oder/und bei unterschiedlicher Länge ergeben sich Ellipsen.
Das Kreuzprodukt aus t und s-Vektor ist auch der Normalenvektor der Ebene, in der sich der Kreis oder die Ellipse befindet.

Bezug
                        
Bezug
kreis im 3d raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:14 Sa 09.02.2008
Autor: Discovery

Hallo, ich stand vor dem gleichen Problem wie kons, der Großteil hat sich durch slains Antwort auch erledigt, allerdings hatte ich in der Schule noch keine Vektorrechnung und musste mir deshalb per Internetseiten alles selbst beibringen.
Mein Problem ist nun: Welche Werte definieren den Spannvektor?
Falls die Frage etwas Schwammig war, so wie ich das verstanden habe besteht der Ortsvektor im 3 dimensionalen Raum aus einer x-, y- und z-Koordinate. Woraus setzen sich dann die Spannvektoren für den Kreis zusammen?

Bezug
                                
Bezug
kreis im 3d raum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 Sa 09.02.2008
Autor: weduwe


> Hallo, ich stand vor dem gleichen Problem wie kons, der
> Großteil hat sich durch slains Antwort auch erledigt,
> allerdings hatte ich in der Schule noch keine
> Vektorrechnung und musste mir deshalb per Internetseiten
> alles selbst beibringen.
> Mein Problem ist nun: Welche Werte definieren den
> Spannvektor?
>  Falls die Frage etwas Schwammig war, so wie ich das
> verstanden habe besteht der Ortsvektor im 3 dimensionalen
> Raum aus einer x-, y- und z-Koordinate. Woraus setzen sich
> dann die Spannvektoren für den Kreis zusammen?

einen vektor kannst du frei wählen, er muß nur in der ebene E des kreises liegen und die länge r haben, also einen beliebigen einheitsvektor [mm] \vec{e}_1 [/mm] wählen und mit r multiplizieren, den 2. bekommst du über das kreuzprodukt mit dem normalenvektor der ebene, also

[mm] \vec{v}_2=r\cdot\frac{\vec{e}_1\times\vec{n}}{|\vec{e}_1\times\vec{n}|} [/mm]


Bezug
                                        
Bezug
kreis im 3d raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:43 Sa 09.02.2008
Autor: Discovery

Sorry, dass ich nochmal nachhaken muss, aber ich hab gestern zum ersten mal überhaupt etwas über vektoren gelesen und deshalb noch etwas Probleme mit dem Nachvollziehen. Spannvektor 1 ins mitlerweile klar, aber mit dem Normalvektor der Ebene kann ich noch nicht so gut umgehen.
Es wäre nett, wenn mir jemand die Herleitung des 2. Vektors nochmal genauer (z.b. als Komponentenweise Darstellung) erklären könnte...
Hoffe das passt noch zum Thema.

Bezug
                                                
Bezug
kreis im 3d raum: Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 Sa 09.02.2008
Autor: weduwe

gerne,
sei eine ebene E , in der der kreis liegt, gegeben mit [mm]E: x-2y+3z=5[/mm], dann hat sie den normalenvektor [mm] \vec{n}=\vektor{1\\-2\\3}. [/mm]
nun suchst du dir einen vektor der in E liegt, z.b [mm] \vec{u}=\vektor{2\\1\\0}. [/mm]
er liegt sicher in E, da das entsprechende skalarprodukt = 0.

nun bestimmst du über das vektorprodukt einen weiteren vektor [mm] \vec{v} [/mm] ,der senkrecht auf [mm] \vec{n} [/mm] steht, also E liegt, und auch senkrecht  auf [mm] \vec{u} [/mm] steht.

[mm] \vec{v}=\vec{n}\times\vec{u}=\vektor{1\\-2\\3}\times\vektor{2\\1\\0}=\vektor{-3\\6\\-3}\sim\vektor{1\\-2\\1} [/mm]

nun mußt du beide noch normieren - also auf die länge 1 stutzen und mit r multiplizieren.

deine kreiusgleichung lautet damit

K: [mm] \vec{x}=\vec{m}+\frac{r}{\sqrt{5}}\vektor{2\\1\\0}cos\alpha+\frac{r}{\sqrt{6}}\vektor{1\\-2\\1}sin\alpha [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de